Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The necessary ecosystem services can be effectively provided through the diverse functioning and processes of ecosystems. Apart from services provided by natural and semi-natural ecosystems, the study on ecosystem development on mineral habitats, established as by-products of mining activity, have revealed surprising results. Unrecognised yet crucial ecosystem services can be provided by novel ecosystems that develop spontaneously on mineral sites created due to human activities, such as mineral mining. These mineral habitats and the ecosystems established de novo provide a wide range of ecosystem services. Modelling ecosystem functioning can simulate and predict the effects of interventions on ecosystem services provided by novel ecosystems. This approach supports adaptive management strategies that maximise desired services while minimising negative impacts on biodiversity and ecosystem integrity. Understanding the functioning of novel ecosystems and their ecosystem services is crucial for enhancing resilience, promoting restoration efforts, and implementing sustainable land-use practices. Recognising the importance of ecosystem services provided by novel ecosystems and involving stakeholders in decision-making processes can foster public support for conservation initiatives and promote collaboration among diverse stakeholders. This approach is particularly important given that many activities related to the re-development of post-industrial areas, especially post-mining regions, have fallen short of achieving their objectives. The essential role of ecosystem services provided by natural, semi-natural, and novel ecosystems highlights the importance of the ecosystem functioning modelling approaches. Such approaches are needed to understand and quantify these services in the context of adhering to sustainable development principles during urban development.
Wydawca
Czasopismo
Rocznik
Tom
Strony
168--175
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland
autor
- AGH University of Krakow, Faculty of Civil Engineering and Resource Management, Department of Environmental Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Krakow, Faculty of Management, Department of Business and Enterprise Management, Gramatyka 10, 30-067 Kraków, Poland
- Dnipro University of Technology, Institute of Nature Management, Department of Mining Engineering and Education, D. Yavornytskoho Ave. 19, 49-005 Dnipro, Ukraine
autor
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences in Krakow, J. Wybickiego 7A, 31-261 Kraków, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland
autor
- Botanical Garden in Mikołów, Sosnowa 5, 43-190 Mikołów, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland
Bibliografia
- Arbault, D. et al. (2014) “Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services,” Science of the Total Environment, 472, pp. 262–272. Available at: https://doi.org/10.1016/j.scitotenv.2013.10.099.
- Bąba, W. et al. (2016) “Arbuscular mycorrhizal fungi (AMF) root colonization dynamics of Molinia caerulea (L.) Moench. in grasslands and post-industrial sites,” Ecological Engineering, 95, pp. 817–827. Available at: https://doi.org/10.1016/j.ecoleng.2016.07.013.
- Bagstad, K.J., Semmens, D.J. and Winthrop, R. (2013) “Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Petro River, Arizona,” Ecosystem Services, 5, pp. 40–50. Available at: https://doi.org/10.1016/j.ecoser.2013.07.007.
- Bai, Y. et al. (2013) “Modeling hydrological ecosystem services and trade-offs: A case study in Bayiangdian watershed, China,” Environmental Earth Sciences, 70, pp. 709–718. Available at: https://doi.org/10.1007/s12665-012-2154-5.
- Balbi, S. et al. (2015) “Modeling trade-offs among ecosystem services in agricultural production systems,” Environmental Modelling & Software, 72, pp. 314–326. Available at: https://doi.org/10.1016/j.envsoft.2014.12.017.
- Barbier, E.B. (2019) “The concept of natural capital,” Oxford Review of Economic Policy, 35, 1, pp. 14–36. Available at: https://doi.org/10.1093/oxrep/gry028.
- Binner, A.R. et al. (2017) Valuing the social and environmental contribution of woodlands and trees in England, Scotland and Wales. Edinburgh: Forestry Commission Research Report, Forestry Commission. Available at: https://www.forestry.gov.scot/publications/585-valuing-the-social-and-environmental-contribution-of-woodlands-and-trees-in-england-scotland-and-wales-research-report (Accessed: September 10, 2024).
- Błaszkowski, J. et al. (2021) “New Glomeromycotan Taxa, Dominikia glomerocarpica sp. nov. and Epigeocarpum crypticum gen. nov. Et sp. nov. from Brazil, and Silvaspora gen. nov. from New Caledonia,” Frontiers in Microbiology, 12, pp. 1–21. Available at: https://doi.org/10.3389/fmicb.2021.655910.
- Błońska, A. et al. (2019) “Impact of selected plant species on enzymatic activity of soil substratum on post-mining heaps,” Journal of Ecological Engineering, 20(1), pp. 138–144. Available at: https://doi.org/10.12911/22998993/93867.
- Bolund, P. and Hunhammar, S. (1999) “Ecosystem services in urban areas,” Ecological Economics, 29(2), pp. 293–301. Available at: https://doi.org/10.1016/S0921-8009(99)00013-0.
- Boumans, R. et al. (2015) “The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems,” Ecosytems Services, 12, pp. 30–41. Available at: https://doi.org/10.1016/j.ecoser.2015.01.004.
- Brady, M. et al. (2012) “An agent-based approach to modeling impacts of agricultural policy on land use, biodiversity and ecosystem services,” Landscape Ecology, 27, pp. 1363–1381. Available at: https://doi.org/10.1007/s10980-012-9787-3.
- Brander, L.M., Beukering van, P. and Cesar, H.S.J. (2007) “The recreational value of coral reefs: A meta-analysis,” Ecological Economics, 63(1), pp. 209–218. Available at: https://doi.org/10.1016/j.ecolecon.2006.11.002.
- Chen, X. et al. (2012) “Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services,” Ecological Modelling, 229, pp. 16–24. Available at: https://doi.org/10.1016/j.ecolmodel.2011.06.007.
- Commelo, S.D. et al. (2014) “Firm-level ecosystem service valuation using mechanistic biogeochemical modeling and functional substitutability,” Ecological Economics, 100, pp. 63–73. Available at: https://doi.org/10.1016/j.ecolecon.2014.01.014.
- Connor, J.D. et al. (2015) “Modelling Australian land use competition and ecosystem services with food price feed backs at high spatial resolution,” Environmental Modelling & Software, 69, pp. 141–154. Available at: https://doi.org/10.1016/j.envsoft.2015.03.015.
- Cordier, M. et al. (2014) “A guiding framework for ecosystem services monetization in ecological-economical modeling,” Ecosystem Services, 8, pp. 86–96. Available at: https://doi.org/10.1016/j.ecoser.2014.03.003.
- Costanza, R. et al. (1998) “The value of the world’s ecosystem services and natural capital,” Ecological Economics, 25, pp. 3–15. Available at: https://doi.org/10.1016/S0921-8009(98)00020-2.
- Delphin, S. et al. (2013) “Mapping potential carbon and timber losses from hurricane using a decision tree and ecosystem services driver model,” Journal of Environmental Management, 129, pp. 599–607. Available at: https://doi.org/10.1016/j.jenvman.2013.08.029.
- Ding, H. and Nunes, P.A.L.D. (2014) “Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems,” Ecological Economics, 97, pp. 60–73. Available at: https://doi.org/10.1016/j.ecolecon.2013.11.004.
- Dyczko, A. (2023) “Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture,” Journal of Sustainable Mining, 22(1), pp. 2–19. Available at: https://doi.org/10.46873/2300-3960.1371.
- Feng, M. et al. (2011) “Prototyping an online wetland ecosystem services model using open model sharing standards,” Environmental Modelling & Software, 26(4), pp. 458–468. Available at: https://doi.org/10.1016/j.envsoft.2010.10.008.
- Gebremariam, S.Y. et al. (2014) “A comprehensive approach to evaluating watershed models for predicting flow regimes critical to downstream ecosystem services,” Environmental Modelling & Software, 61, pp. 121–134. Available at: https://doi.org/10.1016/j.envsoft.2014.07.004.
- Grêt-Regamey, A. et al. (2008) “Linking GIS-based model to value ecosystem services in an Alpine region,” Journal of Environmental Management, 89, pp. 197–208. Available at: https://doi.org/10.1016/j.jenvman.2007.05.019.
- Grêt-Regamey, A. et al. (2013) “Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning,” Landscape and Urban Planning, 109(1), pp. 107–116. Available at: https://doi.org/10.1016/j.landurb-plan.2012.10.011.
- Guerra, C.A., Pinto-Correia, T. and Metzger, M.J. (2014) “Mapping soil erosion prevention using an ecosystem service modeling framework for integrated land management and policy,” Ecosystems, 17, pp. 878–889. Available at: https://doi.org/10.1007/s10021-014-9766-4.
- Guillem, E.E. et al. (2015) “Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity,” Agricultural Systems, 137, pp. 12–23. Available at: https://doi.org/10.1016/j.agsy.2015.03.006.
- Harmáčková, Z.V. and Vačkár, D. (2015) “Modelling regulating ecosystem services trade-offs across landscape scenarios in Třeboňsko Biosphere Reserve, Czech Republic,” Ecological Modelling, 295, pp. 207–215. Available at: https://doi.org/10.1016/j.ecolmodel.2014.10.003.
- Hobbs, R.J. (2007) “Setting effective and realistic restoration goals: Key directions for research,” Restoration Ecology, 15(2), pp. 354–357. Available at: https://doi.org/10.1111/j.1526-100X.2007.00225.x.
- Hou, Y. et al. (2014) “Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China,” Science of the Total Environment, 490, pp. 1012–1028. Available at: https://doi.org/10.1016/j.scitotenv.2014.05.071.
- FEMA (2024) https://www.fema.gov/ (Accessed: April 25, 2024).
- Johnson, G.W. et al. (2012) “Modelling ecosystem services under uncertainty with stochastic SPAN,” in R. Seppelt et al. (eds.) 6th International Congress on Environmental Modelling and Software,. Leipzig, Germany, July. Lugano-Viganello: International Environmental Modelling and Software Society. Available at: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1917&context=iemssconference (Accessed: April 30, 2024).
- Johnston, J.M. et al. (2011) “An integrated modeling framework for performing environmental assessments: Application to ecosystem services in the Albemarle-Pamlico basin (NC and VA, USA),” Ecological Modelling, 222, pp. 2471–2484. Available at: https://doi.org/10.1016/j.ecolmodel.2011.03.036.
- Keddy, P.A. (2010) Wetland ecology: Principles and conservation. 2 nd edn. Cambridge: Cambridge University Press.
- Keller, A.A., Fournier, E. and Fox, J. (2015) “Minimising impacts of land use change on ecosystem services using multi-criteria heuristic analysis,” Journal of Environmental Management, 156(1), pp. 23–30. Available at: https://doi.org/10.1016/j.jenvman.2015.03.017.
- Khan, Z. et al. (2022) “Climate-streamflow relationship and consequences of its instability in large rivers of Pakistan: An elasticity perspective,” Water, 14(13), 2033. Available at: https://doi.org/10.3390/w14132033.
- Koniak, G., Noy-Meir, I. and Perevolotsky, A. (2011) “Modelling dynamics of ecosystem services basket in Mediterranean landscapes: A tool for rational management,” Landscape Ecology, 26, pp. 109–124. Available at: https://doi.org/10.1007/s10980-010-9540-8.
- Larocque, G.R., Bhatti, J. and Arsenault, A. (2014) “Integrated modeling software platform development for effective use of ecosystem models,” Ecological Modelling, 288, pp. 195–202. Available at: https://doi.org/10.1016/j.ecolmodel.2014.06.011.
- Locatelli, B. et al. (2011) “Ecosystem services and hydroelectricity in Central America: Modelling service flows with fuzzy logic and expert knowledge,” Regional Environmental Change, 11, pp. 393–404. Available at: https://doi.org/10.1007/s10113-010-0149-x.
- MacArthur, R.H. and Wilson, E.O. (1967) The theory of Island biogeography. Princeton, NJ: Princeton University Press.
- Martin-Ortega, J., Ojea, E. and Roux, C. (2013) “Payments for water ecosystem services in Latin America: A literature review and conceptual model,” Ecosystem Services, 6, pp. 122–132. Available at: https://doi.org/10.1016/j.ecoser.2013.09.008.
- Martínez-Harms, M.J. and Balvanera, P. (2012) “Methods for mapping ecosystem service supply: A review,” International Journal of Biodiversity Science, Ecosystem Services & Management, 8(1–2), pp. 17–25. Available at: https://doi.org/10.1080/21513732.2012.663792.
- McVittie, A. et al. (2015) “Operationalizing an ecosystem service-based approach using Bayesian Belief Networks: An application to riparian buffer strips,” Ecological Economics, 110, pp. 15–27. Available at: https://doi.org/10.1016/j.ecolecon.2014.12.004.
- MEA (2005a) Ecosystems and human well-being: Biodiversity synthesis. A report of the Millennium Ecosystem Assessment. Washington DC: World Resources Institute. Available at: https://www.millenniumassessment.org/documents/document.354.aspx.pdf (Accessed: August 25, 2024).
- MEA (2005b) Ecosystems and human well-being: Policy responses. Vol. 3. Washington: Island Press, London: Covelo.
- Meylan, L. et al. (2013) “Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: The case of erosion control in coffee-based agroforestry systems in Costa Rica,” Agricultural Systems, 118, pp. 52–64. Available at: https://doi.org/10.1016/j.agsy.2013.02.002.
- Milewska-Hendel, A. et al. (2021) “Cell wall epitopes in grasses of different novel ecosystem habitats on post-industrial sites,” Land Degradation and Development, 32 (4), pp. 1680–1694. Available at: https://doi.org/10.1002/ldr.3786.
- Moor, H., Hylander, K. and Norberg, J. (2015) “Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits,” AMBIO, 44(1), pp. 113–126. Available at: https://doi.org/10.1007/s13280-014-0593-9.
- Nicia, P. et al. (2014) “Characteristics of the habitat conditions of ash-alder carr (Fraxinio-Alnetum) in the Błedowskie Swamp,” Journal of Food, Agriculture & Environment, 12(2), pp. 1227–1232.
- Notter, B. et al. (2012) “Modelling water provision as an ecosystem service in a large East African river basin,” Hydrology and Earth System Sciences, 16(1), pp. 69–86. Available at: https://doi.org/10.5194/hess-16-69-2012.
- Nuppenau, E.A. (2014) “Integrated modelling of payment for ecosystem services: using willingness to pay and accept, for nature provision and addressing public management in cultural landscape,” Operational Research, 14(2), pp. 151–175. Available at: https://doi.org/10.1007/s12351-014-0150-0.
- Ostręga, A. (2013) Organizacyjno-finansowe modele rewitalizacji w rejonach górniczych [Organisational and Financial Models of Revitalisation in Mining Regions]. Rozprawy i Monografie, 279. Kraków: Wyd. AGH.
- Perrings, C. et al. (2011) “The biodiversity and ecosystem services science-policy interface,” Science, 331(6021), pp. 1139–1140. Available at: https://doi.org/10.1126/science.1202400.
- Petz, K. et al. (2014) “Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models,” Global Environmental Change, 29, pp. 223–234. Available at: https://doi.org/10.1016/j.gloenvcha.2014.08.007.
- Poppenborg, P. and Koellner, T.A. (2014) “Bayesian network approach to model farmers’ crop choice using socio-psychological measurements of expected benefits of ecosystem services,” Environmental Modelling & Software, 57, pp. 227–234. Available at: https://doi.org/10.1016/j.envsoft.2014.03.006.
- Raudsepp-Hearne, C. et al. (2010) “Untangling the environmentalist’s paradox: Why is human well-being increasing as ecosystem services degrade?,” BioScience, 60(8), pp. 576–589. Available at: https://doi.org/10.1525/bio.2010.60.8.4.
- Rostański, A. and Woźniak, G. (2007) “Trawy (Poacea) występujące spontanicznie na terenie nieużytków poprzemysłowych [Grasses (Poaceae) on post-industrial waste sites in course of spontaneous succession],” Fragmenta Floristica et Geobotanica Polonica, 9, pp. 31–42.
- Sabatier, R. et al. (2013) “Non-linear effects of pesticide application on biodiversity driven ecosystem services and disservices in a cacao agroecosystem: A modeling study,” Basic and Applied Ecology, 14(2), pp. 115–125. Available at: https://doi.org/10.1016/j.baae.2012.12.006.
- Schlüter, M., Leslie, H. and Levin, S. (2009) “Managing water-use trade-offs in a semi-arid river delta to sustain multiple ecosystem services: A modeling approach,” Ecological Research, 24(3), pp. 491–503. Available at: https://doi.org/10.1007/s11284-008-0576-z.
- Sen, A. (1999) Development as freedom. Oxford: Oxford University Press.
- Shavarskyi, I. et al. (2022) “Management of the longwall face advance on the stress-strain state of rock mass,” Mining of Mineral Deposits, 16(3), pp. 78–85. Available at: https://doi.org/10.33271/mining16.03.078.
- Smajgl, A. et al. (2015) “Assessing the effectiveness of payments for ecosystem services for diversifying rubber in Yunnan, China,” Environmental Modelling & Software, 69, pp. 187–195. Available at: https://doi.org/10.1016/j.envsoft.2015.03.014.
- Solon, J. et al. (2017) Świadczenia ekosystemowe w krajobrazie młodoglacjalnym. Ocena potencjału i wykorzystania [Ecosystem services in the young-glacial landscape. Assessment of the potential and use]. Warszawa: Wyd. Akademickie SEDNO, Instytut Geografii i Przestrzennego Zagospodarowania PAN.
- Sun, Z. and Müller, D.A. (2013) “Framework for modeling payments for ecosystem services with agent-based models, Bayesian Belief Networks and opinion dynamics models,” Environmental Modelling & Software, 45, pp. 15–28. Available at: https://doi.org/10.1016/J.ENVSOFT.2012.06.007.
- Swetnam, R.D. et al. (2011) “Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling,” Journal of Environmental Management, 92(3), pp. 563–574. Available at: https://doi.org/10.1016/j.jenvman.2010.09.007.
- Talik, E. et al. (2018) “Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leaves from post-industrial habitats,” Protoplasma, 255, pp. 773–784. Available at: https://doi.org/10.1007/s00709-017-1179-8.
- Villa, F. (2009) “Semantically driven meta-modelling: Automatic model construction in an environmental decision support for the assessment of ecosystem services flow,” in I.A. Athanasiadis et al. (eds.) Information technologies and environmental engineering. Proceedings of the 4th International ICSC Symposium, Thessaloniki, Greece, 28–29May, 2009. Berlin–Heidelberg: Springer Verlag. Available at: https://link.springer.com/book/10.1007/978-3-540-88351-7 (Accessed: September 09, 2024).
- Wackernagel, M. et al. (2002) “Tracking the ecological overshoot of the human economy,” Proceedings of the National Academy of Sciences of the United States of America, 99(14), pp. 9266–9271. Available at: https://doi.org/10.1073/pnas.142033699.
- Watanabe, M.D.B. and Ortega, E. (2014) “Dynamic energy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change,” Ecological Modelling, 271, pp. 113–131. Available at: https://doi.org/10.1016/j.ecolmodel.2013.03.006.
- Woźniak, G. et al. (2021a) “Is the age of novel ecosystem the factor driving arbuscular mycorrhizal colonization in Poa compressa and Calamagrostis epigejos?,” Plants, 10(5), pp. 949. Available at: https://doi.org/10.3390/plants10050949.
- Woźniak, G. et al. (2021b) “Use of remote sensing to track post-industrial vegetation development,” Land Degradation and Development, 32(3), pp. 1426–1439. Available at: https://doi.org/10.1002/ldr.3789.
- Woźniak, G. et al. (2022) “Post-extraction novel ecosystems suport plant and vegetation diversity in urban-industrial landscapes,” Sustainability, 14(13), 7611. Available at: https://doi.org/10.3390/su14137611.
- Wu, L., Sun, C. and Fan, F. (2022) “Multi-criteria framework for identifying the trade-offs and synergies relationship of ecosystem services based on ecosystem services bundles,” Ecological Indicators, 144, 109453. Available at: https://doi.org/10.1016/j.ecolind.2022.109453.
- Zanchi, G. et al. (2014) “Modelling the effects of management intensification on multiple forest services: a Swedish case study,” Ecological Modelling, 284, pp. 48–59. Available at: https://doi.org/10.1016/j.ecolmodel.2014.04.006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88bb032a-a29e-4670-bd5c-e14e7c9c0697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.