PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent Developments and Needs in Materials Used for Personal Protective Equipment and Their Testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The field of personal protective equipment (PPE) has led to several high technology innovations. Indeed, improved protection against the various possible encountered risks is looked for, in particular at the workplace. This has generated the development of new materials and new manufacturing technologies, as well as the introduction of new applications for existing ones. However, the remaining challenges are numerous. This paper presents some of the new technologies introduced in the field of protective clothing against heat and flames, mechanical risks and chemical aggressors. It also describes new challenges that are currently worked on, in particular the effect of service aging and the need for testing methods that reproduce realuse conditions. Finally, it discusses various existing and potential applications of nanomaterials and smart textiles for PPE.
Rocznik
Strony
347--362
Opis fizyczny
Bibliogr. 88 poz., rys., wykr.
Twórcy
autor
  • Ecole de technologie superieure, Montreal, QC, Canada
autor
  • Ecole de technologie superieure, Montreal, QC, Canada
Bibliografia
  • 1.Protective clothing and gear: body/vehicle armor, fire, chem/bio (Report No. AVM021E). Wellesley, MA, USA: Business Communications Company; 2005.
  • 2.Makinen H. Protective clothing—nowadays and vision. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 3.Berry C, McNeely A, Beauregard K, Haritos S. A guide to personal protective equipment. Raleigh, NC, USA: N.C. Department of Labor; 2008. Retrieved December 16, 2008, from: http://www.nclabor.com/osha/etta/indguide/ig25.pdf.
  • 4.Mayer A, Garbowsky C. Les vetements de protection. Choix et utilisation (INRS 995). Paris, France: Institut National de Recherche et de Securite; 2007. Retrieved December 16, 2008, from: http://www.inrs.fr/inrs-pub/inrs01.nsf/IntranetObjectaccesParReference/ED%20995/$FILE/ed995.pdf.
  • 5.Eiser DN. Problems in personal protective equipment selection. In: Mansdorf SZ, Sager R, Nielsen AP, editors. Performance of Protective Clothing: Second Symposium (STP 989). Philadelphia, PA, USA: American Society for Testing and Materials; 1988. p. 341–6.
  • 6.Abeysekera JDA, Bergquist K. The need for research on human factors regarding personal protective devices in the cold environment. In: Johnson JS, Mansdorf SZ, editors. Performance of protective clothing: fifth volume, 1994 (STP 1237). West Conshohocken, PA, USA: American Society for Testing and Materials; 1996. p. 384–95.
  • 7.Makinen H. Analysis of problems in the protection of fire fighters by personal protective equipment and clothing—development of a turnout suit [doctoral dissertation]. Tampere, Finland: Tampere University of Technology; 1991.
  • 8.Hamilton LE, Gatewood BM, Sherwood PMA. Photodegradation of high performance fibers. Text Chem Color. 1994;26(12):39–45.
  • 9.McLellan TM, Selkirk GA. The management of heat stress for the firefighter (Report No. DRDC Toronto ECR 2004-051). Toronto, ON, Canada: Defense R&D Canada; 2004. Retrieved December 16, 2008, from: http://www.mhsao.com/PDFs/HeatStressMgmtReport1.pdf.
  • 10.LaTourette T, Peterson DJ, Bartis JT, Jackson BA, Houser A. Protecting emergency responders. Volume 2: Community views of safety and health risks and personal protection needs (Chapter 3: Protecting firefighters). Santa Monica, CA, USA: RAND; 2003. p. 25–41. Retrieved December 16, 2008, from: http://www.rand.org/pubs/monograph_reports/2005/MR1646.pdf.
  • 11.Lee J, Kim E, Yoo S, Baek B, Hwang S. Development of an intelligent turnout gear for dynamic thermal protection using two-way shape memory alloy. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 12.Pause B. New cooling undergarment for protective garment systems. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CDROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 13.Shin Y, Yoo D-I, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci. 2005;96(6):2005–10.
  • 14.Meister F, Bauer R, Melle J, Gersching D. Smart duotherm®: the thermo-regulating cellulose fibre with large heat storage capacity. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 15.Wang J, Dionne P, Makris A. Influence of different parameters on cooling efficiency of liquid circulating garments. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 16.Aubouy L. Natural thermoregulatory system for smart textile applications. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 17.Hayashi S, Ishikawa N. High moisture permeability polyurethane for textile applications. J Coated Fabrics. 1993;23: 74–83.
  • 18.Bartels VT. Hydrophilic linings to enhance the liquid sweat transport through water tight clothing. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 19.NFPA 1971. Standard on protective ensembles for structural fire fighting and proximity fire fighting. 2007 edition. Quincy, MA, USA: National Fire Protection Association (NFPA); 2007.
  • 20.Stull JO, Haskell WE, Shepherd AM. Approaches for incorporating CBRN requirements as part of protective ensemble standards for emergency responders. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 21.Riecher A. Enemy agents. Industrial Fire World. 2006;21(1). Retrieved December 16, 2008, from: http://www.fireworld.com/ifw_articles/enemyagents.php.
  • 22.Total Fire Group. Project Heroes; 2005. Retrieved December 16, 2008, from: http://www.totalfiregroup.com/pdf/ProjectHeroes.pdf.
  • 23.Globe Holding Company. Previewing CB.Ready; 2006. Retrieved December 16, 2008, from: http://globefiresuits.com/pdf/CB_preview_catalog.pdf.
  • 24.Honeywell. Spectra® fiber. Retrieved December 16, 2008, from: http://www51.honeywell.com/sm/afc/products-details/fiber.html.
  • 25.DSM. Dyneema®. Retrieved December 16, 2008, from:http://www.dsm.com/en_US/html/hpf/products.htm/.
  • 26.HDM. SuperFabric® brand materials. Retrieved December 16, 2008, from: http://www.superfabric.com/.
  • 27.Nguyen CT, Vu-Khanh T, Lara J. A study on the puncture resistance of rubber materials used in protective clothing. J ASTM Int. 2005;2(4):245–58.
  • 28.Palmer R. Intelligent molecules revolutionizing impact protection. Innovations Report; 2004. Retrieved December 16, 2008, from: http://www.innovations-report.com/html/reports/life_sciences/report-31020.html/.
  • 29.Fortuniak K, Luczynski W, Obersztyn E, Redlich G. Energy absorbing materials for anti-impact products and applications. In: Techtextil Symposium. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 30.Schreuder-Gibson HL, Truong Q, Walker JE, Owens JR, Wander JD, Jones WE Jr. Chemical and biological protection and detection in fabrics for protective clothing. MRS Bulletin. 2003;28(8):574–8.
  • 31.Dever M, Tu D, Davis WT. Trichloroethylene vapor adsorption by nonwovens that contain activated carbon. In: Nelson CN, Henry NW, editors. Performance of protective clothing: issues and priorities for the 21st century, seventh volume (STP 1386). West Conshohocken, PA, USA: American Society for Testing and Materials; 2000. p. 329–41.
  • 32.Cireli A, Mutlu M, Kutlu B, Onar N, Kayatekin I, Celik E. Sol-gel coatings of plasma modified polypropylene fabric for gas defence. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 33.Zukas WX, Wilusz E, Karasz FE. Permselectivity measurements of ion beam modified barrier membranes for improved chemical/biological protective clothing. In: Proceedings of the ANTEC 2004, Annual Technical Conference. Newtown, CT, USA: Society of Plastics Engineers; 2004. p. 2390–4.
  • 34.Bealer Rodie J. Enzyme therapy. Textile World; 2006. Retrieved December 16, 2008, from: http://www.textileworld.com/Articles/2006/March-April/Departments/Quality_Fabric_Of_The_Month_Enzyme_Therapy.html.
  • 35.Feng J, MacDiarmid AG. Sensors using octaaniline for volatile organic compounds. Synth Met. 1999;102(1–3):1304–5.
  • 36.El-Sherif MA, Yuan JM, MacDiarmid A. Fiber optic sensors and smart fabrics. J Intell Mater Syst Struct. 2000;11(5):407–14.
  • 37.Kim YK, Lewis AF, Warner SB, Patra PK, Calvert P. Nanocomposite fibers (National Textile Center Annual Report: 2001;M00–MD08). Spring House, PA, USA: National Textile Center; 2001. Retrieved December 16, 2008, from: http://www.ntcresearch.org/pdf-rpts/AnRp01/M00-D08-A1.pdf.
  • 38.Christensen B. Carbon nanofiber makes smart yarn; 2004. Retrieved December 16, 2008, from: http://www.livescience.com/technology/technovel_nanofiber_041124.html.
  • 39.Grafe T, Graham C. Polymeric nanofibers and nanofiber webs: a new class of nonwoven. In: Proceedings of the International Nonwovens Technical Conference; 2002. Cary, NC, USA: INDA; 2002.
  • 40.High-tech, chemical-resistant textile layers created with nanotechnology. Nanotechnology News; 2005. Retrieved December 16, 2008, from: http://www.azonano.com/news.asp?newsID=978.
  • 41.Hyde K, Rusa M, Hinestroza J. Layerby-layer deposition of polyelectrolyte nanolayers on natural fibres: cotton. Nanotechnology. 2005;16(7):S422–8.
  • 42.Tessier D, Radu I, Filteau M. Antimicrobial fabrics coated with nano-sized silver salt crystals. In: Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, volume 1. Anaheim, CA, USA: Nano Science and Technology Institute; 2005. p. 762–4.
  • 43.Holme I. Innovations in performance clothing and microporous film. Tech Text Int. 2004;13(4):26–30.
  • 44.Duchet J, Gerard JF, Angelloz C, Rumeau P. New nanostructured textiles. In: Techtextil Symposium. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 45.Horter H, Linti C, Göppinger B, Loy S, Planck H. Garment with sensors, electronics and mobile energy supply. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 46.Tognetti A. Sensing fabrics for body posture and gesture classification. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 47.Hertleer C, Van Langenhove L. Interactive PPE and embedded electronics. In: 1st International Conference on Personal Protective Equipment: for more (than) safety. Zwijnaarde, Belgium; CENTEXBEL; 2008.
  • 48.Janssen D. Responsive materials for PPE. In: 1st International Conference on Personal Protective Equipment: for more (than) safety. Zwijnaarde, Belgium; CENTEXBEL; 2008.
  • 49.Devaux E, Koncar V, Kim B, Campagne C, Roux C, Rochery M, et al. Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. T I Meas Control. 2007;29(3–4):355–76.
  • 50.Dias T. Electrically active knitted structures. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 51.Linz T. Technologies for integrating electronics in textiles. In: 4th International Avantex Symposium for Innovative Apparel Textiles. Frankfurt am Maine, Germany: Messe Frankfurt Exhibition; 2007.
  • 52.American Society for Testing and Materials (ASTM). Standard test method for measuring cut resistance of materials used in protective clothing (Standard No. ASTM F1790-05). Annual book of ASTM standards. West Conshohocken, PA, USA: ASTM International; 2005. p. 1602–11.
  • 53.International Organization for Standardization (ISO). Protective clothing—mechanical properties—determination of resistance to cutting by sharp objects (Standard No. ISO 13997:1999). Geneva, Switzerland: ISO;1999.
  • 54.Yarborough P, Schiffelbein P. Improvements in the measurement of cut protection performance: revisions to ASTM F1790. J ASTM Int. 2005;2(4):239–43.
  • 55.Vu TBN, Vu-Khanh T, Lara J. Progress in the characterization of the cutting resistance of protective materials. J ASTM Int. 2005;2(5):399–413.
  • 56.Vu Thi BN, Vu-Khanh T, Lara J. Effect of friction on cut resistance of polymers. J Thermoplast Compos. 2005;18(1):23–36.
  • 57.Nguyen CT, Vu-Khanh T. Mechanics and mechanisms of puncture of elastomer membranes. J Mater Sci. 2004;39(24):7361–4.
  • 58.Nguyen CT, Vu-Khanh T, Lara J. Puncture characterization of rubber membranes. Theor Appl Fract Mec. 2004;42(1):25–33.
  • 59.American Society for Testing and Materials (ASTM). Standard test method for protective clothing material resistance to puncture (Standard No. ASTM F1342-05). Annual book of ASTM standards. West Conshohocken, PA, USA: ASTM International; 2005. p. 1489–93.
  • 60.Dolez PI, Vu-Khanh T, Nguyen CT, Guero G, Gauvin C, Lara J. Influence of medical needle characteristics on the resistance to puncture of protective glove materials. J ASTM Int. 2008;5(1).
  • 61.Vu-Khanh T, Nga Vu TB, Nguyen CT, Lara J. Protective gloves: study of the resistance of gloves to multiple mechanical aggressors (Final report No. R-424). Montreal, QC, Canada: Institut de recherche Robert-Sauve en sante et en securite du travail; 2005. In French.
  • 62.Rodot M. Chemical protective gloves from performances to service time prediction. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 63.Packham, C. Gloves as chemical protection—can they really work? Ann Occup Hyg. 2006;50(6):545–8.
  • 64.Nohile C, Dolez PI, Vu-Khanh T. Mechanical and chemical effects of solvent swelling on butyl rubber. In: Proceedings of the 9th International Conference on Mesomechanics. Particle & continuum aspects of mesomechanics: integrity thresholds for materials and structures; Giens, France. 2007, p. 527–34.
  • 65.Stull JO. A perspective on realistic material chemical performance requirements: the need to redefine how industry chooses chemical protective suit materials. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 66.Perron G, Desnoyers JE, Lara J. Permeation of mixtures of organic liquids through polymeric membranes: role of liquid–liquid interactions. J Appl Polymer Sci. 2002;86(1):195–215.
  • 67.Barker RL. A review of gaps and limitations in test methods for first responder protective clothing and equipment (Final report). Pittsburgh, PA, USA: National Personal Protection Technology Laboratory, National Institute for Occupational Safety and Health; 2005.
  • 68.Song G, Barker RL, Grimes R. Analyzing thermal store energy and clothing thermal protective performance. In: Proceedings of the 4th International Conference on Safety & Protective Fabrics. Roseville, MN, USA: Industrial Fabric Association International; 2004.
  • 69.American Society for Testing and Materials (ASTM). Standard test method for radiant heat performance of flame resistant clothing materials with burn injury prediction (Standard No. ASTM F2702-08). Annual book of ASTM standards. Vol. 11.03. West Conshohocken, PA, USA: ASTM International; 2008.
  • 70.American Society for Testing and Materials (ASTM). Standard test method for unsteady-state heat transfer evaluation of flame resistant materials for clothing with burn injury prediction (Standard No. ASTM F2703-08). Annual book of ASTM standards. Vol. 11.03. West Conshohocken, PA, USA: ASTM International; 2008.
  • 71.Song G. The performance evaluation of thermal protective clothing and recent development in standards. In: 104th Scientific Session of the Institute of Textile Science; November 12, 2008; Edmonton, AB, Canada.
  • 72.International Organization for Standardization (ISO). Protective clothing—clothing to protect against heat and flame (Standard No. ISO 11612:2008). Geneva, Switzerland: ISO; 2008.
  • 73.ISO issues protective clothing standard for heat and flame. OH&S; 2008. Retrieved December 16, 2008, from: http://ohsonline.com/articles/2008/12/1-iso-issues-protective-clothing-standard-for-heat-andflame.aspx.
  • 74.Crown E, Lawson L, Ackerman M, Gonzalez J, Dale D. A proposed heat transmission test for single payer fabrics—results of interlaboratory trials. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 75.Lawson JR, Vettori RL. Thermal measurements for fire fighters’ protective clothing. In: Gritzo LA, Alvares NJ, editors. Thermal measurements: the foundation of fire standards (STP 1427). West Conshohocken, PA, USA: American Society for Testing and Materials; 2002. p. 163–77.
  • 76.Thorpe PA, Torvi DA. Development of non-destructive test methods for assessing effects of thermal exposures on fire fighters’ turnout gear. J ASTM Int. 2004;1(6):74–87.
  • 77.Gauvin C, Tellier C, Daigle R, Petit Jean-Roget T. Evaluation of dexterity tests for gloves. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 78.Bradley JV. Glove characteristics influencing control manipulability. Hum Factors. 1969;11(1):21–35.
  • 79.Harrabi L, Dolez PI, Vu-Khanh T, Lara J. Evaluation of the flexibility of protective gloves. International Journal of Occupational Safety and Ergonomics (JOSE). 2008;14(1):57–64.
  • 80.Harrabi L, Dolez PI, Vu-Khanh T, Tremblay G, Nadeau S, Lariviere C. Characterization of protective glove stiffness: development of a multidirectional deformation test method. Saf Sci. 2008;46(7):1025–36.
  • 81.Gauvin C, Dolez P, Harrabi L, Boutin J, Petit Y, Vu-Khanh T, Lara J. Mechanical and biomechanical approaches to measure protective glove adherence. In: Proceedings of the 52nd Annual Meeting of the Human Factors and Ergonomics Society. Santa Monica, CA, USA: Human Factors and Ergonomics Society; 2008, p. 2018–22.
  • 82.Torvi DA, Hadjisophocleous GV. Development of methods to evaluate the useful lifetime of firefighters’ protective clothing. In: Nelson CN, Henry NW, editors. Performance of protective clothing: issues and priorities for the 21st century, seventh volume (STP 1386). West Conshohocken, PA: American Society for Testing and Materials; 2000. p. 329–41.
  • 83.International Association of Fire Fighters. Fire fighters protective clothing: moisture barrier alert and recall. Safety Alerts; 1999. Retrieved December 16, 2008, from: http://www.iaff.org/hs/Alerts/alert06.asp.
  • 84.Fries AM, Eichinger H. Sustained performance of personal protective equipment during wearlife and the implications towards harmonized European standards, risk assessment and user specifications. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 85.Rossi RM, Bolli W, Stampfli R. Thermal and mechanical performance of firefighters’ protective clothing after heat exposure. In: Proceedings of the 3rd European Conference on Protective Clothing and Nokobetef 8 [CD-ROM]. Gdynia, Poland: CIOP-PIB; 2006.
  • 86.Gonzales AR, Schofield RB, Hart SV. Third status report to the Attorney General on body armor safety initiative testing and activities. Special Report. Washington, DC, USA: U.S. Department of Justice; 2005. Retrieved December 16, 2008, from: http://www.ojp.usdoj.gov/bvpbasi/docs/SupplementII_08_12_05.pdf.
  • 87.Nohile C, Dolez P, Vu-Khanh T, Lara J. Effect of thermo-oxidative aging on the resistance to solvents of butyl rubber gloves [paper presented at the symposium “Research in OHS: previous risks and current challenges” during the 74th conference of the Association Canadienne Francophone pour l’Avancement des Sciences, Montreal, Canada]; 2006. In French.
  • 88.Guero G, Dolez P, Vu-Khanh T. Study of physico-chemical aging of polypropylene [paper presented at the symposium “Research in OHS: previous risks and current challenges” during the 74th conference of the Association Canadienne Francophone pour l’Avancement des Sciences, Montreal, Canada]; 2006. In French.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88b72256-0aa1-4468-8b8c-69c8073510c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.