Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article we study asymptotic properties of weighted samples produced by the auxiliary particle filter (APF) proposed by Pitt and Shephard [17]. Besides establishing a central limit theorem (CLT) for smoothed particle estimates, we also derive bounds on the Lp error and bias of the same for a finite particle sample size. By examining the recursive formula for the asymptotic variance of the CLT we identify first-stage importance weights for which the increase of asymptotic variance at a single iteration of the algorithm is minimal. In the light of these findings, we discuss and demonstrate on several examples how the APF algorithm can be improved.
Czasopismo
Rocznik
Tom
Strony
1--28
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
- Département CITI, Télécom SudParis, 9 Rue Charles Fourier, 91011 Evry Cedex, France
autor
- Département TSI, Institut des Télécoms, Télécom ParisTech, 46 Rue Barrault, 75634 Paris Cedex 13, France
autor
- Center of Mathematical Sciences, Lund University, Box 118, SE-22100, Lund, Sweden
Bibliografia
- [1] T. Bollerslev, R. F. Engle and D. B. Nelson, ARCH models, in: The Handbook of Econometrics, Vol. 4, R. F. Engle and D. McFadden (Eds.), North-Holland, Amsterdam 1994, pp. 2959-3038.
- [2] O. Cappé, É. Moulines and T. Rydén, Inference in Hidden Markov Models, Springer, New York 2005.
- [3] N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, Ann. Statist. 32 (2004), pp. 2385-2411.
- [4] P. Del Moral, Feyman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications, Springer, New York 2004.
- [5] R. Douc and É. Moulines, Limit theorems for weighted samples with applications to sequential Monte Carlo methods, Ann. Statist. 36 (2008), pp. 2344-2376.
- [6] A. Doucet, N. de Freitas and N. Gordon, Sequential Monte Carlo Methods in Practice, Springer, New York 2001.
- [7] A. Doucet and A. Johansen, A note on auxiliary particle filters, Statist. Probab. Lett. 78 (2008), pp. 1498-1504.
- [8] P. Fearnhead, Sequential Monte Carlo Methods in Filter Theory, Ph. D. thesis, University of Oxford, 1998.
- [9] N. J. Gordon, D. J. Salmond and A. F. M. Smith, Novel approach to non-linear/non-Gaussian Bayesian state estimation, IEEE Proc. Comm. Radar Signal Proc. 140 (1993), pp. 107-113.
- [10] J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J. Finance 42 (1987), pp. 281-300.
- [11] M. Hürzeler and H. R. Künsch, Monte Carlo approximations for general state space models, J. Comput. Graph. Statist. 7 (1998), pp. 175-193.
- [12] H. R. Künsch, Recursive Monte Carlo filters: algorithms and theoretical analysis, Ann. Statist. 33 (2005), pp. 1983-2021.
- [13] J. Liu, Monte Carlo Strategies in Scientific Computing, Springer, New York 2001.
- [14] J. Olsson, O. Cappé, R. Douc and É. Moulines, Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models, Bernoulli 14 (2008), pp. 155-179.
- [15] J. Olsson, R. Douc and É. Moulines, Improving the two-stage sampling algorithm: a statistical perspective, in: On Bounds and Asymptotics of Sequential Monte Carlo Methods for Filtering, Smoothing, and Maximum Likelihood Estimation in State Space Models, Ph. D. thesis, Lund University, 2006, pp. 143-181.
- [16] V. V. Petrov, Limit Theorems of Probability Theory, Springer, New York 1995.
- [17] M. K. Pitt and N. Shephard, Filtering via simulation: Auxiliary particle filters, J. Amer. Statist. Assoc. 87 (1999), pp. 493-499.
- [18] M. K. Pitt and N. Shephard, Time varying covariances: A factor stochastic volatility approach (with discussion), in: Bayesian Statistics, Vol. 6, J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (Eds.), Oxford University Press, Oxford 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88b5c4f2-dd11-414d-8483-a9247112be16