Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nanocrystalline multiferroic BiFeO3 ceramics was prepared by a novel solution combustion method (SCM). The X-ray diffraction (XRD) studies on structural properties of the synthesized ceramics reveal that the BiFeO3 ceramics has rhombhohedral perovskite structure with an average crystallite size of 15 nm. The ferroelectric P-E hysteresis loop measurement at room temperature shows unsaturated behavior with a partial reversal of polarization. Investigations on temperature dependence of dielectric constant in BiFeO3 demonstrate a clear dielectric anomaly at approximately around 380 C, which corresponds to antiferromagnetic to paramagnetic phase transition (TN) and also evidences a possible coupling among the electric and magnetic dipoles of BiFeO3. A room temperature variation of dielectric constant “e” and dielectric loss “tan d” as a function of frequency in the range of 100 Hz – 1 MHz, confirms that both dielectric constant and loss are strong functions of frequency.
Wydawca
Czasopismo
Rocznik
Tom
Strony
221--225
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon - 425 001 (M.S) India
- Department of Engineering Sciences and Humanities (DESH), SRTTC-FOE, Kamshet, Pune - 410 405 (M.S) India
autor
- Department of Engineering Sciences and Humanities (DESH), Vishwakarma Institute of Technology (VIT), Pune - 411 037 (M.S) India
autor
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon - 425 001 (M.S) India
autor
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon - 425 001 (M.S) India
autor
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon - 425 001 (M.S) India
autor
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon - 425 001 (M.S) India
Bibliografia
- [1] CHEONG S. W., MOSTOVOY M., Nat. Mater., 6, (2007),13.
- [2] KUMAR N., PANWAR N., GAHTORI B., SINGH N., KISHAN H., AWANA V. P. S., J. Alloy. Comp., 501,(2010), 129.
- [3] KHOMCHENKO V. A., ET AL., J. Magn. Magn. Maters.321, (2009), 1692.
- [4] SPALDIN N. A., FIEBIG M., Science, 309, (2005), 391.
- [5] KUMAR M., YADAV K. L., Appl. Phys. Lett., 91 (2007), 242901.
- [6] GARCIA F. G., RICCARDI C. S., SIMOES A. Z., J. Alloy. Comp., 501, (2010), 25.
- [7] VARSHNEY D., KUMAR A., VERMA K., J. Alloy. Comp., 509, (2011), 8421.
- [8] WANG Y., J. Alloy. Comp., 509, (2011), 1362.
- [9] SHAMI M. Y., AWAN M. S., ANIS-UR-REHMAN M., J. Alloy. Comp., 509, (2011), 10139.
- [10] AZAM A., JAWAD A., AHMED A. S., CHAMAN M., NAQVI A. H., J. Alloy. Comp., 509, (2011), 2909.
- [11] KOTHARI D., REDDY V. R., SATHE V. G., GUPTAA., BANERJEE A., AWASTHI A. M., J. Magn. Magn.Mater., 320, (2008), 548.
- [12] REDDY V. R., KOTHARI D., GUPTA A., GUPTA S. M.,Appl. Phys. Lett., 94, (2009), 082505.
- [13] GAUTAM A., RANGRA V. S., Cryst. Res. Tech., 45 (9), (2010), 953.
- [14] JIA D. C., XU J. H., KE H., WANG W., ZHOU Y., J. Eur. Ceram. Soc., 29, (2007), 193.
- [15] FRUTH V. ET AL., Progr. Solid State Chem. 35, (2007), 193.
- [16] DAI Z., AKISHIGE Y., J. Phys. Appl. Phys., 43, (2010), 445403.
- [17] JIANG Q. H., NAN C. W., WANG Y., LIU Y. H., SHEN Z. J., J. Electroceram., 21, (2008), 690.
- [18] MAHESH KUMAR M., PALKAR V. R., SRINIVAS K., SURYANARAYANA S. V., Appl. Phys. Lett., 76 (19), (2000), 2764.
- [19] SAHA S., GHANAWAT S. J., PUROHIT R. D., J. Mater.Sci., 41 (2006), 1939.
- [20] XU Q., ZAI H., WU D., TANG Y. K., XU M. X., J. Alloy. Comp., 485, (2009), 13.
- [21] CHAUDHARI Y. A., SINGH A., ABUASSAJ E. M., CHATTERJEE R., BENDRE S. T., J. Alloy. Comp., 518, (2012), 51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88b53128-423a-48b6-9c1f-6bf51c2d559a