PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tunable terahertz all-dielectric linear-to-circular polarization conversion metasurface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Terahertz (THz) linear-to-circular (LTC) polarization conversion plays a crucial role in imaging and 6G wireless communication. This paper will give an account of a thermally tunable THz LTC polarization converter by using the active all-dielectric metasurface. It consists of zirconium oxide (ZrO2) microsphere resonators, active strontium titanate (STO) cladding, and flexible polyimide substrate. Through numerical simulation, the amplitude of the ellipticity of the proposed polarization converter at 0.265 THz is –1, indicating that perfect right-hand circular polarization (RHCP) wave is achieved. Meanwhile, the amplitude of the ellipticity is less than –0.8 between 0.247 and 0.278 THz (relative bandwidth is 12%). In addition, with the temperature changes of 180 K (from 200 to 380 K), the operating frequency of the converter can be tuned from 0.220 to 0.291 THz, a sensitivity about 39 GHz/100 K is achieved. Besides, the modulation depth of the ellipticity amplitude can achieve 92% at 0.220 THz, which demonstrates that the converter can output terahertz wave with different polarization states, and the device can be fabricated on a large scale. These perfect conversion performances show that the converter has potential applications in high-speed communication and imaging.
Czasopismo
Rocznik
Strony
551--563
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
  • Lenovo Research, Beijing 100094, China
autor
  • School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
  • State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Bibliografia
  • [1] JEPSEN P.U., COOKE D.G., KOCH M., Terahertz spectroscopy and imaging–Modern techniques and applications, Laser & Photonics Reviews 5(1), 2011, pp. 124–166, DOI: 10.1002/lpor.201000011.
  • [2] KATLETZ S., PFLEGER M., PÜHRINGER H., MIKULICS M., VIEWEG N., PETERS O., SCHERGER B., SCHELLER M., KOCH M., WIESAUER K., Polarization sensitive terahertz imaging: detection of birefringence and optical axis, Optics Express 20(21), 2012, pp. 23025–23035, DOI: 10.1364/OE.20.023025.
  • [3] TONOUCHI M., Cutting-edge terahertz technology, Nature Photonics 1(2), 2007, pp. 97–105, DOI: 10.1038/nphoton.2007.3.
  • [4] SONG Z., GAO Z., ZHANG Y., ZHANG B., Terahertz transparency of optically opaque metallic films, Europhysics Letters 106(2), 2014, article no. 27005, DOI: 10.1209/0295-5075/106/27005.
  • [5] FAHAD A. K., RUAN C., CHEN K., Dual-wide-band dual polarization terahertz linear to circular polarization converters based on bi-layered transmissive metasurfaces, Electronics 8(8), 2019, article no. 869, DOI: 10.3390/electronics8080869.
  • [6] FELLERS R.S., LEFORESTIER C., BRALY L.B., BROWN M.G., SAYKALLY R.J., Spectroscopic determination of the water pair potential, Science 284(5416), 1999, pp. 945–948, DOI: 10.1126/science.284.5416.945.
  • [7] HO L., PEPPER M., TADAY P., Signatures and fingerprints, Nature Photonics 2(9), 2008, pp. 541–543, DOI: 10.1038/nphoton.2008.174.
  • [8] JANSEN C., WIETZKE S., PETERS O., SCHELLER M., VIEWEG N., SALHI M., KRUMBHOLZ N., JORDENS C., HOCHREIN T., KOCH M., Terahertz imaging: applications and perspectives, Applied Optics 49(19), 2010, pp. E48–E57, DOI: 10.1364/AO.49.000E48.
  • [9] WOODWARD R.M., WALLACE V.P., PYE R.J., COLE B.E., ARNONE D.D., LINFIELD E.H., PEPPER M., Terahertz pulse imaging of ex vivo basal cell carcinoma, Journal of Investigative Dermatology 120(1), 2003, pp. 72–78, DOI: 10.1046/j.1523-1747.2003.12013.x.
  • [10] NAGATSUMA T., HORIGUCHI S., MINAMIKATA Y., YOSHIMIZU Y., HISATAKE S., KUWANO S., YOSHIMOTO N., TERADA J., TAKAHASHI H., Terahertz wireless communications based on photonics technologies, Optics Express 21(20), 2013, pp. 23736–23747, DOI: 10.1364/OE.21.023736.
  • [11] KOENIG S., LOPEZ-DIAZ D., ANTES J., BOES F., HENNEBERGER R., LEUTHER A., TESSMANN A., SCHMOGROW R., HILLERKUSS D., PALMER R., ZWICK T., KOOS C., FREUDE W., AMBACHER O., LEUTHOLD J., KALLFASS I., Wireless sub-THz communication system with high data rate, Nature Photonics 7(12), 2013, pp. 977–981, DOI: 10.1038/nphoton.2013.275.
  • [12] QIU F., TAN Z., FU Z., WAN W., LI M., WANG C., CAO J., Reflective scanning imaging based on a fast terahertz photodetector, Optics Communications 427, 2018, pp. 170–174, DOI: 10.1016/j.optcom.2018.06.030.
  • [13] LI J., A novel terahertz wave reflective polarizer for THz communication, Optics Communications 284(4), 2011, pp. 957–960, DOI: 10.1016/j.optcom.2010.10.020.
  • [14] LIU M., TIAN Z., ZHANG X., GU J., OUYANG C., HAN J., ZHANG W., Tailoring the plasmon-induced transparency resonances in terahertz metamaterials, Optics Express 25(17), 2017, pp. 19844–19855, DOI: 10.1364/OE.25.019844.
  • [15] ZHAO R., ZHANG L., ZHOU J., KOSCHNY TH., SOUKOULIS C.M., Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index, Physical Review B 83(3), 2011, article no. 035105, DOI: 10.1103/PhysRevB.83.035105.
  • [16] CHANG C., CHEN H., Broadband terahertz linear-to-circular polarization conversion, [In] 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), IEEE, 2018, pp. 1–3, DOI: 10.1109/IRMMW-THz.2018.8510418.
  • [17] XIA R., JING X., ZHU H., WANG W., TIAN Y., HONG Z., Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region, Optics Communications 383, 2017, pp. 310–315, DOI: 10.1016/j.optcom.2016.08.060.
  • [18] LEE W.S.L., NIRANTAR S., HEADLAND D., BHASKARAN M., SRIRAM S., FUMEAUX C., WITHAYACHUMNANKUL W., Broadband terahertz circular‐polarization beam splitter, Advanced Optical Materials 6(3), 2018, article no. 1700852, DOI: 10.1002/adom.201700852.
  • [19] MASSON J.-B, GALLOT G., Terahertz achromatic quarter-wave plate, Optics Letters 31(2), 2006, pp. 265–267, DOI: 10.1364/OL.31.000265.
  • [20] YOU X., FUMEAUX C., WITHAYACHUMNANKUL W., Broadband terahertz quarter-wave plate design, [In] 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), IEEE, 2019, pp. 1–2, DOI: 10.1109/IRMMW-THz.2019.8874192.
  • [21] MINOVICH A.E., MIROSHNICHENKO A.E., BYKOV A.Y., MURZINA T.V., NESHEV D.N., KIVSHAR Y.S., Functional and nonlinear optical metasurfaces, Laser & Photonics Reviews 9(2), 2015, pp. 195–213, DOI: 10.1002/lpor.201400402.
  • [22] MARTINI E., MENCAGLI M., MACI S., Metasurface transformation for surface wave control, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2049), 2015, article no. 20140355, DOI: 10.1098/rsta.2014.0355.
  • [23] ZHANG Y., LI T., CHEN Q., ZHANG H., O’HARA J.F., ABELE E., TAYLOR A.J., CHEN H.T., AZAD A.K., Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies, Scientific Reports 5(1), 2015, article no. 18463, DOI: 10.1038/srep18463.
  • [24] WANG J., GAO C.N., JIANG Y.N., AKWURUOHA C.N., Ultra-broadband and polarization-independent planar absorber based on multilayered graphene, Chinese Physics B 26(11), 2017, article no. 114102, DOI: 10.1088/1674-1056/26/11/114102.
  • [25] WANG J., JIANG Y., Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials, Optics Express 25(5), 2017, pp. 5206–5216, DOI: 10.1364/OE.25.005206.
  • [26] WANG J., JIANG Y., HU Z., Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials, Optics Express 25(18), 2017, pp. 22149–22157, DOI: 10.1364/OE.25.022149.
  • [27] GRADY N.K., HEYES J.E., CHOWDHURY D.R., ZENG Y., REITEN M.T., AZAD A.K., TAYLOR A.J., DALVIT D.A.R., CHEN H.T., Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340(6138), 2013, pp. 1304–1307, DOI: 10.1126/science.1235399.
  • [28] CHIANG Y., YEN T., A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission, Applied Physics Letters 102(1), 2013, article no. 011129, DOI: 10.1063/1.4774300.
  • [29] ZHU L., DONG L., GUO J., MENG F.Y., HE X.J., ZHAO C.H., WU Q., Polarization conversion based on Mie-type electromagnetically induced transparency (EIT ) effect in all-dielectric metasurface, Plasmonics 13(6), 2018, pp. 1971–1976, DOI: 10.1007/s11468-018-0712-8.
  • [30] ZHU J., LI S., DENG L., ZHANG C., YANG Y., ZHU H., Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial, Optical Materials Express 8(5), 2018, pp. 1164–1173, DOI: 10.1364/OME.8.001164.
  • [31] XIAO Z., ZOU H., ZHENG X., LING X., WANG L., A tunable reflective polarization converter based on hybrid metamaterial, Optical and Quantum Electronics 49(12), 2017, article no. 401, DOI: 10.1007/s11082-017-1235-9.
  • [32] ZHAO X., SCHALCH J., ZHANG J., SEREN H.R., DUAN G., AVERITT R.D., ZHANG X., Electromechanically tunable metasurface transmission waveplate at terahertz frequencies, Optica 5(3), 2018, pp. 303–310, DOI: 10.1364/OPTICA.5.000303.
  • [33] VASIĆ B., ZOGRAFOPOULOS D.C., ISIĆ G., BECCHERELLI R., GAJIĆ R., Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals, Nanotechnology 28(12), 2017, article no. 124002, DOI: 10.1088/1361-6528/aa5bbd.
  • [34] YANG X., ZHANG D., WU S., YIN Y., LI L., CAO K., HUANG K., Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution, Scientific Reports 7(1), 2017, article no. 3190, DOI: 10.1038/s41598-017-03439-9.
  • [35] HOU Y., ZHANG C., WANG C., High-efficiency and tunable terahertz linear-to-circular polarization converters based on all-dielectric metasurfaces, IEEE Access 8, 2020, pp. 140303–140309, DOI: 10.1109/ACCESS.2020.3007838.
  • [36] YANG D., ZHANG C., JU X., JI Y., LAN C., Multi-resonance and ultra-wideband terahertz metasurface absorber based on micro-template-assisted self-assembly method, Optics Express 28(2), 2020, pp. 2547–2556, DOI: 10.1364/OE.381927.
  • [37] BI K., YANG D., CHEN J., WANG Q., WU H., LAN C., YANG Y., Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials, Photonics Research 7(4), 2019, pp. 457–463, DOI: 10.1364/PRJ.7.000457.
  • [38] LAN C., MA H., WANG M., GAO Z., LIU K., BI K., ZHOU J., XIN X., Highly efficient active all-dielectric metasurfaces based on hybrid structures integrated with phase-change materials: from terahertz to optical ranges, ACS Applied Materials and Interfaces 11(15), 2019, pp. 14229–14238, DOI: 10.1021/acsami.8b22466.
  • [39] ZHANG L., ZHOU P., LU H., ZHANG L., XIE J., DENG L., Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator, Optical Materials Express 6(4), 2016, pp. 1393–1404, DOI: 10.1364/OME.6.001393.
  • [40] JIANG Y., WANG L., WANG J., AKWURUOHA C.N., CAO W., Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies, Optics Express 25(22), 2017, pp. 27616–27623, DOI: 10.1364/OE.25.027616.
  • [41] ZAHN M., Electromagnetic Field Theory: A Problem Solving Approach, Krieger, 2003.
  • [42] LI Y., ZHANG J., QU S., WANG J., ZHENG L., PANG Y., XU Z., ZHANG A., Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces, Applied Physics 117(4), 2015, article no. 044501, DOI: 10.1063/1.4906220.
  • [43] GAO X., YU X.-Y., CAO W.-P., JIANG Y.-N., YU X.-H., Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces, Chinese Physics B 25(12), 2016, article no. 128102, DOI: 10.1088/1674-1056/25/12/128102.
  • [44] CONG L., CAO W., ZHANG X., TIAN Z., GU J., SINGH R., HAN J., ZHANG W., A perfect metamaterial polarization rotator, Applied Physics Letters 103(17), 2013, article 171107, DOI: 10.1063/1.4826536.
  • [45] ZHANG H., ZENG L., LIU G., HUANG T., Tunable linear-to-circular polarization converter using the graphene transmissive metasurface, IEEE Access 7, 2019, pp. 158634–158642, DOI: 10.1109/ACCESS.2019.2950847.
  • [46] HUANG X., HE W., YANG F., RAN J., YANG Q., XIE S., Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime, Optical Materials Express 9(3), 2019, pp. 1377–1385, DOI: 10.1364/OME.9.001377.
  • [47] LI W., CHENG Y., Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure, Optics Communications 462, 2020, article no. 125265, DOI: 10.1016/j.optcom.2020.125265.
  • [48] ZHAN Y., LI B., LAN C., BI K., QU Z., Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range, Optics Express 25(18), 2017, pp. 22158–22163, DOI: 10.1364/OE.25.022158.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88afd130-d13c-4d2f-bfb9-f5c254fb362f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.