PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of T6 Heat Treatment Effectiveness of Hypo-eutectic Silumins with Limited Parameters of Solutioning Treatment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat treatment processes, due to qualitative requirements for the cast machinery components and restrictions on energy consumption resulting on the one hand from environmental concerns, and on the other hand from a requirements coming from minimization of manufacturing costs, are resulting in searching after a technologies enabling obtainment of satisfactory results, in form of improved mechanical properties mainly, while minimizing (limiting) parameters of successive operations of the heat treatment. Heat treatment of the T6 type presented in this paper consists in operations of heating of investigated alloys to suitably selected temperature (range of this temperature was evaluated on the base of the ATD method), holding at such temperature for a short time, and next rapid cooling in water (20ooC) followed by artificial ageing, could be such technology in term s of above mentioned understanding of this issue. Performed T6 heat treatment with limited parameters of solutioning operation resulted in visible increase in tensile strength Rm of AlSi7Mg, AlSi7Cu3Mg and AlSi9Cu3(Fe) alloys.
Rocznik
Strony
85--91
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • University of Bielsko-Biala, ATH, Bielsko-Biała, Poland
Bibliografia
  • [1] Pietrowski, S. (2001). Silumins. Łódź: Technical University Editorial. (in Polish).
  • [2] Poniewierski, Z. (1989). Crystallization, structure and properties of silumins. Warszawa: WNT. (in Polish).
  • [3] Wasilewski, P. (1993). Silumins - Modification and its impact on structure and properties. Katowice: PAN Solidification of metals and alloys. 21, Monography. (in Polish).
  • [4] Alshmri, F. (2013). Lightweight Material: aluminium high silicon alloys in the automotive industry. Advanced Materials Research. 774-776, 1271-1276. DOI:10.4028/ www.scientific.net/AMR.774-776.1271.
  • [5] Padmanaban, D.A. & Kurien, G. (2012). Silumins: the automotive alloys. Advanced Materials & Processes, 170(3), 28-30.
  • [6] Kaufman, J.G & Rooy, E.L. (2004). Aluminum alloys casting: casting properties, processes, and application. ASM International, Materials Park, OH.
  • [7] Tupaj, M., Orłowicz, A.W., Mróz, M. & Trytek, A. (2015). Fatigue properties of AlSi7Mg alloy witch diversified microstructure. Archives of Foundry Engineering. 15(3). 87-90.
  • [8] Gauthier, J., Louchez, P. & Samuel, F.H. (1995). Heat treatment of 319.2 Al automotive alloy: Part 1, solution heat treatment. Cast Metals. 8(1995)1, 91-106.
  • [9] Tash, M., Samuel, F.H., Mucciardi, F. & Dothy H.W. (2007). Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys. Materials Science and Engineering A, 443(2007), 185-201. DOI: 10.1016/ j.msea.2006.08.054.
  • [10] Sjölander, E. & Seifeddine, S. (2012). The influence of natural ageing on the artificial ageing response of Al-Si-Cu-Mg casting alloys. La Metallurgia Italiana. 11-12, 39-43.
  • [11] Mohamed, A.M.A. & Samuel, F.H. (2012). A Review on the Heat treatment of Al-Si-Cu/Mg casting alloys. Heat Treatment - Conventional and Novel Applications, F. Czerwinski (Ed.), InTech, 55-72.
  • [12] Sjölander, E. & Seifeddine, S. (2010). The heat treatment of Al-Si-Cu-Mg casting alloys. Journal of Materials Processing Technology. 210, 1249-1259. DOI: 10.1016/j.jmatprotec. 2010.03.020.
  • [13] Sigworth, G.K., Howell, J., Rios, O. & Kaufman, M.J. (2006). Heat treatment of natural aging aluminum casting alloys. International Journal of Cast Metals Research. 19(2), 123-129.
  • [14] Beroual, S., Boumerzoug, Z., Paillard, P. & Borjon-Piron, Y. (2019). Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys. Journal of Alloys and Compounds. 784, 1026-1035. DOI:10.1016/ j.jallcom.2018.12.365.
  • [15] Furuta, S., Kobayashi, M. Uesugi, K., Takeuchi, A., Aoba, T. & Miura, H. (2018). Observation of morphology changes of fine eutectic si phase in Al-10%Si cast alloy during heat treatment by synchrotron radiation nanotomography. Materials. 11(8), 1308. DOI: 10.3390/ma11081308.
  • [16] El Sebaie, O., Samuel, F.H., Samuel, A.M. & Doty, H.W. (2008). The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al-Si casting alloys. Materials Science and Engineering A. 480, 342-355. DOI:10.1016/ j.msea.2007.07.039.
  • [17] Sankar, V. & Muthu, S. (2014). Investigation of microstructure and mechanical behavior of AlSi7Mg. Journal of Applied Sciences. 14(8), 811-816. DOI: 10.3923/jas.2014.811.816.
  • [18] Apelian, D., Shivkumar, S. & Sigworth, G. (1989). Fundamental aspects of heat treatment of cast Al-Si-Mg alloys. AFS Transactions. 97, 727-742.
  • [19] Zhang, D.L. & Zheng, L. (1996). The quench sensitivity of cast Al-7 Wt Pct Si-0.4 Wt Pct Mg alloy. Metallurgical and Materials Transactions A, 27(12), 3983-3991.
  • [20] Xiao, B., Rong, Y. & Li, K. (2011). Experimental investigation of residual stresses in water and air quenched aluminum alloy castings. Experimental and Applied Mechanics. 6, 193-199. DOI: 10.1007/978-1-4419-9792-0_36.
  • [21] Ragab, K.A., Samuel, A.M., Al-Ahmari, A.M.A. et al. (2013). Influence of fluidized bed quenching on the mechanical properties and quality index of T6 tempered B319.2-type aluminum alloys. Journal of Materials Engineering and Performance. 22(11), 3476-3489. DOI: 10.1007/s11665-013-0610-3.
  • [22] Senatorova, O.G. & et al. (2002). Low distortion quenching of aluminum alloys in polymer medium. Materials Science Forum. 396-402,1659-1664.
  • [23] Magno, I.A.B & et al. (2017). Effect of the T6 heat treatment on microhardness of a directionally solidified aluminum-based 319 alloy. Materials Research. 20(Suppl. 2), 662-666. DOI: 10.1590/1980-5373-mr-2016-0961.
  • [24] Barros A.S. & et al. (2015). Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al-Cu alloys: Effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase. Metals and Materials International. 21(3), 429-439. DOI: 10.1007/s12540-015-4499-2.
  • [25] Reis, B.P. et al. (2013). The effects of dendritic arm spacing (as-cast) and aging time (solution heat-treated) of Al–Cu alloy on hardness. Journal of Alloys and Compounds. 549, 324–335. DOI: 10.1016/j.jallcom.2012.09.041.
  • [26] Jarco, A & Pezda, J. (2015). Impact of various types of heat treatment on mechanical properties of the EN AC-AlSi6Cu4 alloy. Archives of Foundry Engineering. 15(spec.2), 35-38.
  • [27] Skocovský, P., Tillová, E. & Belan, J. (2009). Influence of technological factors on eutectic silicon morphology in Al-Si alloys. Archives of Foundry Engineering. 9(2), 169-172.
  • [28] Paramo, V., Colas, R., Velasco, E. & Valtierra, S. (2000). Spheroidization of the Al-Si eutectic in a cast aluminum alloy. Journal of Materials Engineering and Performance. 9(6), 616-622.
  • [29] Brown, Z., Barnes, C., Bigelow, J. & Dodd, P. (2009). Squeeze cast automotive applications and design considerations. La Metalurgia Italiana. 3, 2-4.
  • [30] Dulyapraphant, D & et al. (2013). Applications of squeeze casting for automobile parts. Materials Science Forum. 773-774, 887-893. DOI: 10.4028/www.scientific.net/MSF.773-774.887.
  • [31] Salleh, M.S., Omar, M.Z., Syarif, J. & Mohammed, M.N. (2013). An overview of semisolid processing of aluminium alloys. ISRN Materials Science. 2013, 1-9. DOI: 10.1155/2013/679820.
  • [32] Szymczak, T., Gumienny, G. & Pacyniak, T. (2015). Effect of vanadium and molybdenum on the crystallization, microstructure and properties of hypoeutectic silumin. Archives of Foundry Engineering. 15(4). 81-86. DOI: 10.1515/afe-2015-0084.
  • [33] Pezda, J. (2015). Effect of the T6 heat treatment on change of mechanical properties of the AlSi12CuNiMg alloy modified with strontium. Archives of Metallurgy and Materials. 60(2), 627-632.
  • [34] Piatkowski, J. & Wieszała, E. (2019). Crystallization and structure of AlSi10Mg0.5Mn0.5 alloy with dispersion strengthening with Al–FexAly–SiC phases. Metals. 9(8), 1-8. DOI:10.3390/met9080865.
  • [35] Jarco, A. & Pezda, J. (2016). Effect of different variants of heat treatment on mechanical properties of the AlSi17CuNiMg alloy. Archives of Foundry Engineering. 16(2), 41-44. DOI: 10.1515/afe-2016-0023.
  • [36] Pio, L.Y. (2011). Effect of T6 Heat Treatment on the Mechanical Properties of Gravity Die Cast A356 Aluminium Alloy. Journal of Applied Sciences, 11(11), 2048-2052. DOI: 10.1016/S1003-6326(11)60955-2.
  • [37] Pedersen, L. & Arnberg, L. (2001). The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metallurgical and Materials Transactions A, 32, 525-532. DOI: 10.1007/s11661-001-0069-y.
  • [38] Lech, Z., Dudek, P. & Sęk-Sas, G. (1998). Instructions for melting non-ferrous metal alloys. Kraków: Instytut Odlewnictwa. (in Polish).
  • [39] Peng, J., Tang, X., He, J. & Xu, D. (2011). Effect of heat treatment on microstructure and tensile properties of A356 alloys. Transactions of Nonferrous Metals Society of China, 21(9), 1950-1956. DOI: 10.1016/S1003-6326(11)60955-2.
  • [40] Grosselle, F., Timelli, G. & Bonollo, F. (2010). Doe applied to microstructural and mechanical properties of Al–Si–Cu–Mg casting alloys for automotive applications. Materials Science and Engineering A. 527, 3536-3545. DOI: 10.1016/j.msea.2010.02.029.
  • [41] Moizumi, K. Mine, K., Tezuka, H. & Sato, T. (2002). Influence of precipitate microstructures on thermal fatigue properties of Al-Si-Mg cast alloys. Material Science Forum. 396-402, 1371-1376. DOI: 10.4028/www.scientific.net /MSF.396-402.1371.
  • [42] Timelli, G at al. (2014). Sviluppo di trattamenti termici T6 e T7 di leghe secondarie AlSi9Cu3(Fe) e AlSi7Cu3Mg. ASSOFOND XXXII Congresso di Fonderia. 21-22 November, Brescia, Italy.
  • [43] Fan, K.F. et al. (2013). Tensile and fatigue properties of gravity casting aluminum alloys for engine cylinder heads. Materials Science and Engineering A, 586(1), 78-85. DOI: 10.1016/j.msea.2013.08.016.
  • [44] Molina, R. & Rosso, R. (2011). Mechanical characterization of aluminium alloys for high temperature applications Part1: Al-Si-Cu alloys. Metallurgical Science and Technology. 29(1), 5-15.
  • [45] Zolotorevsky, V.S., Belov, N.A. & Glazoff, M.V. (2007). Casting Aluminum Alloys. Elsevier, Oxford.
  • [46] Hurtalová, L. & Tillová, E. (2010). On the mechanical properties and structure of age-hardened AlSi9Cu3 cast alloy. International Journal of Applied Mechanics and Engineering, 15(2), 355-362.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88aedef5-1efa-4040-b1ec-88769f35acbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.