PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empirical testing of inventories applying on-board measurements of exhaust emissions at port and at sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a comprehensive case study to identify the best vessel-specific inventory family that predicts the primary emissions from an ocean-going vessel when at berth, while maneuvering and while cruising. The main purpose of the paper is to generalize the implication of the case study by advising a novel policy, which will allow different authorities to estimate the shipping emissions in a cost-effective and reliable way. The emissions rates of nitrogen oxides, sulphur oxides, carbon dioxide, carbon monoxide, hydrocarbon, and particulate matter from the main engine and from the auxiliary engines are measured for different modes of ship operations in an on-board experiment campaign. The measured total emission amounts were predicted with 13 families of emission inventories and prediction deviations have been calculated. A procedure was advised for estimating the prediction inventory deviations of the combined hourly emission amounts from the main engine plus the auxiliary engines. Each inventory family has been formalized as a six-dimensional vector of prediction deviations for any mode of operation. The best vessel-specific inventory families were identified using the minimal mean absolute deviation criteria. A more rational procedure to rank inventories is considered, which treats the missing value problem and constructs a six-attribute value function. The use of preferential analysis and value functions further clarifies the recommended choice of inventory method. In this case study we demonstrated that the most suitable inventory families will provide reliable predictions with acceptable deviations from the measured emissions. At berth and for maneuvering, the best inventory family turned out to be MOPSEA (with 32.2 % and 39.6 % mean absolute deviations respectively). For cruising, the most precise inventory family is MEET (with 59.2% mean absolute deviation), whereas MOPSEA being the third best. However, some of the other inventories produce unacceptably high deviation, well above 100%. The practical implication is that while inventory methods can produce precise and cost-effective predictions, they should never be used without experimental verification. That is why, we provide an algorithm to use on-board experimental measurements to identify the best vessel-specific inventory family, which predicts the primary emission of a ship at a given mode of operation. The proposed algorithm and the implications of the case study are utilized to motivate a proposal for a novel future policy for a cost-effective and reliable emission estimation from shipping.
Twórcy
autor
  • Australian Maritime College, University of Tasmania, Launceston, Tasmania, Australia
autor
  • Australian Maritime College, University of Tasmania, Launceston, Tasmania, Australia
  • Nikola Vaptsarov Naval Academy, Varna, Bulgaria
  • Australian Maritime College, University of Tasmania, Launceston, Tasmania, Australia
  • Nikola Vaptsarov Naval Academy, Varna, Bulgaria
Bibliografia
  • Acock, AC. (2005). Working with Missing Values. Journal of Marriage and Family, 67(4), 1012-1016.
  • Agrawal, H., Malloy, Q. G. J., Welch, W. A., Miller, J. W., & Cocker, D. R. (2008). In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmospheric Environment, 42(21), 5504-5510.
  • Browning, L., & Bailey, K. (2006). Current Methodologies and Best Practices for Preparing Port Emission Inventories, 15th International Emission Inventory Conference "Reinventing Inventories - New Ideas in New Orleans", New Orleans, May 15-18, 1-20.
  • Cappa, C. D., Williams, E. J., Lack, D. A, Buffaloe, G. M., Coffman, D., Hayden, K. L., et al. (2014). A case study into the measurement of ship emissions from plume intercepts of the NOAA ship Miller Freeman. Atmospheric Chemistry and Physics, 24(3), 1337-1352.
  • Chen, G., Huey, L. G., Trainer, M., Nicks, D., Corbett, J. J., Ryerson, et al. (2005). An investigation of the chemistry of ship emission plumes during ITCT 2002. Journal of Geophysical Research-Atmospheres, 220(D1O), D10S90, doi: 10.1029/2004JD005236.
  • Cohen, J., Cohen, P., West, S., & Aiken, L. (2003). Applied multiple regression/correction analysis for the behavioral sciences, Third Edition, Mahwah, NJ: Erlbaum.
  • Cooper, D. A. (2001). Exhaust emissions from high speed passenger ferries. Atmospheric Environment, 35(24), 4189-4200.
  • Cooper, D. A. (2003). Exhaust emissions from ships at berth. Atmospheric Environment, 37(27), 3817-3830.
  • Cooper, D. A., & Andreasson, K. (1999). Predictive NOx emission monitoring on board a passenger ferry. Atmospheric Environment, 33(28), 4637-4650.
  • Cooper, D. A., Peterson, K., & Simpson, D. (1996). Hydrocarbon, PAH and PCB emissions from ferries: A case study in the Skagerak-Kattegatt-Oresund region. Atmospheric Environment, 30(14), 2463-2473.
  • Cooper, D., & Gustafsson, T. (2004). SCB: Methodology for calculating emissions from ships: 1. Update of emission factors. SMHI Swedish Meteorological and Hydrological Institute (publisher), Report series SMED and SMED&SLU, No. 4.
  • Corbett, J. J., & Fischbeck, P. (1997). Emissions from ships. Science, 275(5339), 823-824.
  • Corbett, J. J., & Koehler, H. W. (2003). Updated emissions from ocean shipping. Journal of Geophysical Research-Atmospheres, 108(D20), 4650-4666.
  • Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A (2007). Mortality from ship emissions: A global assessment Environmental Science & Technology, 42(24), 8512-8518.
  • Dalsoren, S. B., Eide, M. S., Endresen, O., Mjelde, A., Gravir, G., & Isaksen, I. S. A. (2009). Update on emissions and environmental impacts from the international fleet of ships: The contribution from major ship types and ports. Atmospheric Chemistry and Physics, 9(6), 2171-2194.
  • Deniz, C., & Kilic, A. (2010). Estimation and assessment of shipping emissions in the region of Ambarli Port, Turkey. Environmental Progress & Sustainable Energy, 29(1), 107-115.
  • Du, Y. Q., Chen, Q. S., Quan, X. W., Long, L., & Fung, R.Y. K. (2011). Berth allocation considering fuel consumption and vessel emissions. Transportation Research Part E-Logistics and Transportation Review, 47(6), 1021-1037.
  • Endresen, O., Sorgard, E., Behrens, H. L., Brett, P. O., & Isaksen, I. S. A. (2007). A historical reconstruction of ships' fuel consumption and emissions. Journal of Geophysical Research-Atmospheres, 2_2(D12), D12301, doi:10.1029/2006JD007630.
  • Endresen, O., Sorgard, E., Sundet, J. K., Dalsoren, S. B., Isaksen, I. S. A., Berglen, T. F., & Gravir, G. (2003). Emission from international sea transportation and environmental impact Journal of Geophysical Research-Atmospheres, 108(1)17), 4560, doi: 10.1029/2002JD002898
  • ENTEC. (2007). Ship emissions inventory - Mediterranean Sea. Concawe Review, 16(1), 8-10.
  • EPA (2010). Control of emissions from new marine compression-ignition engines at or above 30 liters per cylinder. A Proposed Rule by the Environmental Protection Agency on 08/28/2009, 44441-44595
  • Eyring, V., Kohler, H. W., Van Aardenne, J., & Lauer, A. (2005). Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research-Atmospheres, 110(D173O5), doi: 10.1029/2004JD00561
  • French, S. (1993). Decision theory: an introduction to the mathematics of rationality. UK: Ellis Horwood.
  • French, S. & Insua, D.R. (2010). Statistical Decision Theory, Kendall's Library of Statistics 9, Wiley.
  • Fu, M. L., Ding, Y., Ge, Y. S., Yu, L. X., Yin, H., Ye, W. T., & Liang, B. (2013). Real-world emissions of inland ships on the Grand Canal, China. Atmospheric Environment, 81, 222-229.
  • Goldsworthy, L., & Galbally, I. E. (2011). Ship engine exhaust emissions in waters around Australia: An overview. Air Quality and Climate Change, 45(4), 24.
  • Goldsworthy, L., & Goldsworthy, B. (2015). Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data: An Australian case study. Environmental Modelling & Software, 63, 45-60.
  • Gommers, A., Verbeeck, L., Cleemput E. V., Schrooten, L., & De Vlieger, I. (2007). Monitoring programme on air pollution from sea-going vessels EV/43 (MOPSEA) Part 2: Global change, ecosystems and biodiversity. Scientific support plan for a sustainable development policy (SPSDII), Belgian Science Policy.
  • Hallquist, A. M., Fridell, E., Westerlund, J., & Hallquist M. (2013). On-board measurements of nanoparticles from a SCR-equipped marine diesel engine. Environmental Science & Technology, 47(2), 773-780.
  • Hickman, J., Hassel, D., Joumard, R, Samaraz, Z. & Sorenson, S. (1999) Methodology for calculating transport emissions and energy consumption (MEET), Transport Research Board, The National Academies of Sciences, Engineering and Medicine, USA
  • Hockstad, L. & Hanel L. (2018) Inventory of U.S. Greenhouse Gas Emissions and Sinks. United States: N. p., 2018. Web. doi:10.15485/1464240.
  • IMO. (2010). Report of the marine environment protection committee on its sixty-first session, MEPC61/24/Corr.3
  • IMO. (2014). Reduction ofGHG emissions from ships, third IMO GHG study, final report.
  • Jalkanen, J. P., Brink, A, Kalli, J., Pettersson, H., Kukkonen, J., & Stipa, T. (2009). A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmospheric Chemistry and Physics, 9(23), 9209-9223.
  • Jalkanen, J. P., Johansson, L., Kukkonen, J., Brink, A, Kalli, J., & Stipa, T. (2012). Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon moNOxide. Atmospheric Chemistry and Physics, 22(5), 2641-2659.
  • Kasper, A, Aufdenblatten, S., Forss, A., Mohr, M., & Burtscher, H. (2007). Particulate emissions from a low-speed marine diesel engine. Aerosol Science and Technology, 41(1), 24-32.
  • Keeney, R. L. & Raiffa, H. (1993). Decisions with multiple objectives: preference and value tradeoffs. Cambridge University Press.
  • Kilic, A., & Deniz, C. (2010). Inventory of shipping emissions in Izmit Gulf, Turkey. Environmental Progress & Sustainable Energy, 29(2), 221-232.
  • Kim, S., Hwang, J. W., & Lee, C. S. (2010). Experiments and modeling on droplet motion and atomization of diesel and bio-diesel fuels in a cross-flowed air stream. International Journal of Heat and Fluid Flow, 31 (4), 667-679.
  • Kristensen, H. O. (2010). Energy demand and exhaust gas emissions of marine engines. Technical University of Denmark.
  • Lu, G., Brook, J. R., Alfarra, M. R., Anlauf, K., Leaitch, W. R., Sharma, S., & Phinney, L. (2006). Identification and characterization of inland ship plumes over Vancouver, BC. Atmospheric Environment, 40(15), 2767-2782.
  • Lyyranen, J., Jokiniemi, J., Kauppinen, E. I., & Joutsensaari, J. (1999). Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. Journal of Aerosol Science, 30(6), 771-784.
  • Martinez de Oses, .X & La Castells, M. (2010). Emission models: A comparison to determine the impact of maritime transport on emissions in SW European short sea shipping. No 207470, Proc. 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, Transportation Research Forum.
  • Merk, O. (2014). Shipping emissions in ports. International Transport Forum (Paris, France) Discussion Paper No. 2014-20, OECD/ITF.
  • Michaelowa, A. (2000). The Kyoto Protocol. Ecological Economics, 34(1), 155-156.
  • Miola, A, & Ciuffo, B. (2011).Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources. Atmospheric Environment, 45(13), 2242-2251.
  • Moreno-Gutierrez, J., Calderay, F., Saborido, N., Boile, M., Valero, R. R., & Duran-Grados, V. (2015). Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods. Energy, 86, 603-616.
  • Nikolova, N. D., Hirota, K., Kobashikawa, C., & Tenekedjiev, K. (2006). Elicitation of non-monotonic preferences of a fuzzy rational decision maker. Information Technologies and Control, Year IV, Volume 1, 36-50.
  • Nikolova, N. D., Toneva-Zheynova, D., Naydenov, D., Tenekedjiev, K. (2012). Imputing missing values of environmental multi-dimensional vectors using a modified Roweis algorithm, Proc. IFAC Workshop on Dynamics and Control in Agriculture and Food Processing, 3-16 June, Plovdiv, Bulgaria, 199-205.
  • OECD. (1997). The OECD report on regulatory reform synthesis. Organisation for Economic Co-operation and Development, France.
  • Olesen, H. R., Winther, M., Ellermann, T., Christensen, J., & Plejdrup, M. (2009). Ship emissions and air pollution in Denmark: Present situation and future scenarios. National Environmental Research Institute Aarhus University, Environmental Project No. 1307 2009 Miljøprojekt
  • Petzold, A., Hasselbach, J., Lauer, P., Baumann, R., Franke, K., Gurk, C. & Weingartner, E. (2008). Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmospheric Chemistry and Physics, 8(9), 2387-2403.
  • Petzold, L. .A, Weinzierl, B., Fiebig, M., Lichtenstern, M., Lauer, P., Gurk, C., Franke, K., & Weingartner, E. (2006). Particle emissions from ship engines: emission properties and transformation in the marine boundary layer, Proceedings of the TAC-Conference, 26-29 June, Oxford, UK, pp. 78-82.
  • Radischat, C., Sippula, O., Stengel, B., Klingbeil, S., Sklorz, M., Rabe, R. & Zimmermann, R. (2015). Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry. Analytical and Bioanalytical Chemistry, 407(20), 5939-5951.
  • Sinha, P., Hobbs, P. V., Yokelson, R. J., Bertschi, I. T., Blake, D. R., Simpson, I. J. & Novakov, T (2003). Emissions of trace gases and particles from savanna fires in southern Africa. Journal of Geophysical Research-Atmospheres, 108(D13).
  • Skjølsvik, K. O., Andersen, A. B., Corbett, J. J., & Skjelvik, J. M. (2000). Study of greenhouse gas emissions from ships (report to International Maritime Organization on the outcome of the IMO Study on Greenhouse Gas Emissions from Ships), M.S.G.C.M.U. MEPC 45/8. Center for Economic Analysis/Det Norske Veritas, Trondheim, Norway.
  • Trozzi, C., & De Lauretis, R. (2013). International navigation, national navigation, national fishing, EMEP/EEA emission inventory guidebook.
  • United Nations conference on trade and development - UNCTAD. (2014). Review of maritime transport. UNCTAD/RMT/2014, United Nations Publication Sales no. E.14.II.D.5.
  • Van der Gon, H. D., & Hulskotte, J. (2010) Methodologies for estimating shipping emissions in Netherlands, Netherlands Research Program on Particulate Matter.
  • Wang, C., Corbett, J. J., & Firestone, J. (2000). Improving spatial representation of global ship emissions inventories. Environmental Science & Technology, 42(1), 193-199.
  • Winnes, H., & Fridell, E. (2009). Particle emissions from ships: Dependence on fuel type. Journal of the Air & Waste Management Association, 59(12), 1391-1398.
  • Wright, A. (1997). Marine diesel engine particulate emissions. Transactions of the Institute of Marine Engineers, 109, 345-364.
Uwagi
EN
1. The authors would like to express special thanks to the National Centre for Maritime Engineering and Hydrodynamic of the Australian Maritime College (University of Tasmania), as well as to our colleagues from the Queensland University of Technology – Thuy Chu Van, Richard Brown and Zoran Ristovski – for the strong support of this study. We also acknowledge and express gratitude to the Port of Brisbane Corporation for their generous cooperation, as well as to Maritime Safety Queensland and to stevedore operators AAT, Patricks and DP World for their contribution to this study.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88ac3ca1-6387-4a55-8d0d-c125afbb35c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.