PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability of Friction Stir Welding to steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The friction stir welding (FSW) method is widely considered to be one of the most significant developments in joining technology to emerge in the last 30 years. The technique has originally been developed for joining difficult-to-fusion-weld Al-alloys, particularly for high strength grades and now widely used in various industrial applications, such as transport industries. On the other hand, the application of FSW to high temperature materials such as steels is hindered due to the problems associated with the stirring tools although there is a wide interest for the application of this technique to these materials. Design/methodology/approach: The aim of this review is to address the current state-of-the-art of FSW of steels, focusing particularly on microstructural aspects and the resulting properties of these joints and discuss the future prospects of this technique for steels. For instance, the use of FSW can be advantageous for joining steels in some special applications where conventional fusion welding processes fail to produce sound cost effective joints, and the high tooling costs of FSW can be justified (i.e. underwater joining of steel pipes or hot plate welding in steel mills). In this study, only structural steels (mainly plain C steels), ferritic stainless steels, austenitic stainless steels and duplex stainless steels will be considered and the other types of steels are out of the scope of this work although some examples are included in the discussion. Research limitations/implications: The tools experience high temperatures in FSW of steels, i.e., above 1000°C. The number of tool materials which can withstand such temperatures is very limited. In addition, the welding of many common steels can be readily conducted by various conventional fusion welding methods. These joining methods are very flexible, easy-to-perform and well established in industrial applications, which further prevents the application of FSW to these materials. These limitations are to be overcome for commercial exploitation of this technique for joining steels.
Rocznik
Strony
65--85
Opis fizyczny
Bibliogr. 131 poz., rys.
Twórcy
autor
  • Faculty of Engineering and Natural Sciences, İskenderun Technical University, İskenderun-Hatay, Turkey
  • Faculty of Engineering and Natural Sciences, İskenderun Technical University, İskenderun-Hatay, Turkey
  • Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
  • Vocational School of Technical Sciences, Recep Tayyip Erdogan University, Rize, Turkey
Bibliografia
  • [1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, International Patent Application No. PCT/GB92/02203, GB Patent Application No. 9125978?8 and US Patent Application No. 5,460,317, December 1991.
  • [2] Z.Y. Ma, R.S. Mishra, Friction stir welding and processing, Materials Science and Engineering R 50 (2005) 1-78.
  • [3] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys, International Materials Reviews 54/2 (2009) 49-93.
  • [4] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties, Progress in Materials Science 53/6 (2008) 980-1023.
  • [5] G. Çam, Friction stir welded structural materials: Beyond Al-alloys, International Materials Reviews 56/1 (2011) 1-48.
  • [6] G. Çam, S. Mıstıkoǧlu, Recent developments in friction stir welding of Al-alloys, Journal of Materials Engineering and Performance 23/6 (2014) 1936-1953.
  • [7] G. Çam, G. Ipekoǧlu, Recent developments in joining of aluminium alloys, International Journal of Advanced Manufacturing Technology 91/5-8 (2017) 1851-1866, DOI: 10.1007/s00170-016-9861-0.
  • [8] A. Toumpis, A. Galloway, S. Cater, N. McPherson, Development of a process envelope for friction stir welding of DH36 steel – a step change, Materials & Design 62 (2014) 64-75.
  • [9] J. Yang, B.L. Xiao, D. Wang, Z.Y. Ma, Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy, Materials Science and Engineering A 527/3 (2010) 708-714.
  • [10] D. Zhang, M. Suzuki, K. Maruyama, Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding, Scripta Materialia 52/9 (2005) 899-903.
  • [11] S.G. Lim, S.S. Kim, C.G. Lee, C.D. Yim, S.J. Kim, Tensile behavior of friction-stir-welded AZ31-H24 Mg alloy, Metallurgical and Materials Transactions A 36/6 (2005) 1609-1612.
  • [12] H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio, Microstructure and mechanical properties of friction stir welds of 60% Cu-40% Zn copper alloy, Materials Science and Engineering A 371 (2004) 160-169.
  • [13] G. Çam, S. Mistikoglu, M. Pakdil, Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate, Welding Journal 88/11 (2009) 225s-232s.
  • [14] G. Çam, H.T. Serindaǧ, A. Çakan, S. Mıstıkoǧlu, H. Yavuz, The effect of weld parameters on friction stir welding of brass plates, Materialwissenschaft und Werkstofftechnik 39/6 (2008) 394-399.
  • [15] T. Küçükömeroǧlu, E. Şentürk, L. Kara, G. Ipekoǧlu, G. Çam, Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy, Journal of Materials Engineering and Performance 25/1 (2016) 320-326.
  • [16] G. Çam, G. Ipekoǧlu, H. Tarık Serindaǧ, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Science and Technology of Welding and Joining 19/8 (2014) 715-720.
  • [17] G. Ipekoǧlu, G. Çam, Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys, Metallurgical and Materials Transactions A 45/7 (2014) 3074-3087.
  • [18] G. Ipekoǧlu, S. Erim, G. Çam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions, Metallurgical and Materials Transactions A 45/2 (2014) 864-877.
  • [19] G. Ipekoǧlu, S. Erim, G. Çam, Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates, International Journal of Advanced Manufacturing Technology 70/1 (2014) 201-213.
  • [20] G. Ipekoǧlu, S. Erim, B. Gören Kıral, G. Çam, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove Materialy 51/3 (2013) 155-163.
  • [21] Y. Bozkurt, S. Salman, G. Çam, The effect of welding parameters on lap-shear tensile properties of dissimilar friction stir spot welded AA5754H22/2024-T3 joints, Science and Technology of Welding and Joining 18/4 (2013) 337-345.
  • [22] G. Ipekoǧlu, B. Gören Kıral, S. Erim, G. Çam, Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates, Materials and Technology 46/6 (2012) 627-632.
  • [23] G. Çam, S. Güçlüer, A. Çakan, H.T. Serindaǧ, Mechanical properties of friction stir butt-welded Al5086 H32 plate, Materialwissenschaft und Werkstofftechnik 40/8 (2009) 638-642.
  • [24] C. Sharma, D.K. Dwivedi, P. Kumar, Influence of inprocess cooling on tensile behavior of friction stir welded joints of AA7039, Materials Science and Engineering A 556 (2012) 479-487.
  • [25] S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, Low-temperature friction-stir welding of 2024 aluminum, Scripta Materialia 41 (1999) 809-815.
  • [26] T. Miyazawa, Y. Iwamoto, T. Maruko, H. Fujii, Development of Ir based tool for friction stir welding of high temperature materials, Science and Technology of Welding and Joining 28/2 (2011) 188-192.
  • [27] T. Miyazawa, Y. wamoto, T. Maruko, and H. Fujii, Development of high strength Ir based alloy tool for friction stir welding, Science and Technology of Welding and Joining 17/3 (2012) 213-218.
  • [28] R. Ohashi, M. Fujimoto, S. Mironov, Y.S. Sato, H. Kokawa, Effect of contamination on microstructure in friction stir spot welded DP590 steel, Science and Technology of Welding and Joining 14/3 (2009) 221-227.
  • [29] W.M. Thomas, P.L. Threadgill, E.D. Nicholas, Feasibility of friction stir welding steel, Science and Technology of Welding and Joining 4/6 (1999) 365-372.
  • [30] T.J. Lienert, W.L. Stellwag, B.B. Grimmett, R.W. Warke, Friction Stir Welding studies on mild steel, Welding Journal 82/1 (2003) 1s-9s.
  • [31] A.P. Reynolds, W. Tang, M. Posada, J. DeLoach, Friction stir welding of DH36 steel, Science and Technology of Welding and Joining 8/6 (2003) 455-460.
  • [32] P.J. Konkol, C.J.A. Mathers, R. Johnson, J.R. Pickens, Friction stir welding of HSLA-65 steel for shipbuilding, Journal of Ship Production and Design 19/3 (2003) 159-164.
  • [33] A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, S. Packer, A microstructural study of friction stir welded joints of carbon steels, International Journal of Offshore and Polar Engineering 14/4 (2004) 284-288.
  • [34] R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, K. Nogi, Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process, Materials Science and Engineering A 423 (2006) 324-330.
  • [35] H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, K. Nogi, Friction stir welding of a high carbon steel, Materials Transactions – JIM 47/1 (2006) 239-242.
  • [36] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Friction stir welding of carbon steels, Materials Science and Engineering A 429 (2006) 50-57.
  • [37] L. Cui, H. Fujii, N. Tsuji, K. Nogi, Friction stir welding of a high carbon steel, Scripta Materialia 56/7 (2007) 637-640.
  • [38] H. Fujii, L. Cui, M. Maeda, K. Nogi, Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys, Materials Science and Engineering A 419 (2006) 25-31.
  • [39] Y. S. Sato, H. Yamanoi, H. Kokowa, T. Furuhara, Microstructural evolution of ultrahigh carbon steel during friction stir welding, Scripta Materialia 57/6 (2007) 557-560.
  • [40] W. Gan, Z.T. Li, S Khurana, Tool materials selection for friction stir welding of L80 steel, Science and Technology of Welding and Joining 12/7 (2007) 610-613.
  • [41] S.H.C. Park, Y.S. Sato, H. Kokowa, K. Okamoto, S. Hirano, M. Inagaki, Rapid formation of the sigma phase in 304 stainless steel during friction stir welding, Scripta Materialia 49/12 (2003) 1175-1180.
  • [42] S.H.C. Park, Y.S. Sato, H. Kokowa, K. Okamoto, S. Hirano, M. Inagaki, Corrosion resistance of friction stir welded 304 stainless steel, Scripta Materialia 51/2 (2004) 101-105.
  • [43] A.P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, Structure, properties, and residual stress of 304 stainless steel friction stir welds, Scripta Materialia 48/9 (2003) 1289-1294.
  • [44] Y.S. Sato, T.W. Nelson, C.J. Sterling, Recrystallization in type 304L stainless steel during friction stirring, Acta Materialia 53/3 (2005) 637-645.
  • [45] Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, C.O. Pettersson, Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel, Materials Science and Engineering A 397 (2005) 376-384.
  • [46] P. Miao, G. R. Odette, J. Gould, J. Bernath, R. Miller, M. Alinger, C. Zanis, The microstructure and strength properties of MA957 nanostructured ferritic alloy joints produced by friction stir and electro-spark deposition welding, Journal of Nuclear Materials 367370 (2007) 1197-1202.
  • [47] C. Meran, V. Kovan, A. Alptekin, Friction Stir Welding of AISI 304 austenitic stainless steel, Materialwissenschaft und Werkstofftechnik 38/10 (2007) 829-835.
  • [48] T. Saeid, A. Abdollah-Zahed, H. Assadi, F. Malek Ghaini, Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel, Materials Science and Engineering A 496 (2008) 262-268.
  • [49] S.H.C. Park, Y.S. Sato, H. Kokowa, K. Okamoto, S. Hirano, M. Inagaki, Microstructural characterisation of stir zone containing residual ferrite in friction stir welded 304 austenitic stainless steel, Science and Technology of Welding and Joining 10/5 (2005) 550-556.
  • [50] H.K.D.H. Bhadeshia, T. DebRoy, Critical assessment: friction stir welding of steels, Science and Technology of Welding and Joining 14/3 (2009) 193-196.
  • [51] Y.C. Chen, H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K. Matsubayashi, Y. Michishita, Y. Fujiya, J. Katoh, Friction stir processing of 316L stainless steel plate, Science and Technology of Welding and Joining 14/3 (2009) 197-201.
  • [52] Y.S. Sato, N. Harayama, H. Kokowa, H. Inoue, Y. Tadokoro, S. Tsuge, Evaluation of microstructure and properties in friction stir welded superaustenitic stainless steel, Science and Technology of Welding and Joining 14/3 (2009) 202-209.
  • [53] T. Weinberger, N. Enzinger, H. Cerjak, Microstructural and mechanical characterization of friction stir welded 15-5PH steel, Science and Technology of Welding and Joining 14/3 (2009) 210-215.
  • [54] M.P. Miles, T.W. Nelson, R. Steel, E. Olsen, M. Gallagher, Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel, Science and Technology of Welding and Joining 14/3 (2009) 228-232.
  • [55] Y.D. Chung, H. Fujii, R. Ueji, K. Nogi, Friction stir welding of hypereutectoid steel (SK5) below eutectoid temperature, Science and Technology of Welding and Joining 14/3 (2009) 233-238.
  • [56] G. Buffa, L. Fratini, Friction stir welding of steels: process design through continuum based FEM model, Science and Technology of Welding and Joining 14/3 (2009) 239-246.
  • [57] W.M. Thomas, C.S. Wiesner, D.J. Marks, D.G. Staines, Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials, Science and Technology of Welding and Joining 14/3 (2009) 247-253.
  • [58] R. Nandan, G.G. Roy, T.J. Lienert, T. DebRoy, Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materialia 55 (2007) 883-895.
  • [59] D.H. Choi, C.Y. Lee, B.W. Ahn, J.H. Choi, Y.M. Yeon, K. Song, H.S. Park, Y J. Kim, C.D. Yoo, S.B. Jung, Frictional wear evaluation of WC-Co alloy tool in friction stir spot welding of low carbon steel plates, International Journal of Refractory Metals and Hard Materials 27 (2009) 931-936.
  • [60] S. Heino, Role of Mo and W during sensitization of superaustenitic stainless steel-crystallography and composition of precipitates, Metallurgical and Materials Transactions A 31 (2000) 1893-1905.
  • [61] X. Long, S.K. Khanna, Modelling of electrically enhanced friction stir welding process using finite element method, Science and Technology of Welding and Joining 10/4 (2005) 482-487.
  • [62] G. Kohn, Y. Greenberg, I. Makover, A. Munitz, Laser-assisted friction stir welding, Welding Journal 81/2 (2002) 46-48.
  • [63] S.R. Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao, Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints, Defence Technology 11 (2015) 308-317.
  • [64] A.K. Lakshminarayanan, V. Balasubramanian, Understanding the parameters controlling friction stir welding of AISI 409M ferritic steel, Metals and Materials International 17/6 (2011) 969-981.
  • [65] S.D. Meshram, A.C. Paradkar, G.M. Reddy, S. Pandey, Friction stir welding: An alternative to fusion welding for better stress corrosion cracking resistance of maraging steel, Journal of Manufacturing Processes 25 (2017) 94-103.
  • [66] H. Lee, C. Kim, J.H. Song, An evaluation of global and local tensile properties of friction-stir welded DP980 dual-phase steel joints using a digital image correlation method, Materials 8 (2015) 8424-8436.
  • [67] T. Küçükömeroǧlu, S.M. Aktarer, G. Ipekoǧlu, G. Çam, Investigation of microstructural and mechanical properties of friction stir welded St37-St44 butt joints, TMMOB Chamber of Mechanical Engineers, Proceedings of the 9th Welding Technology National Congress and Exhibition, Ankara, Turkey, 2015, 425-434 (in Turkish).
  • [68] T. Küçükömeroǧlu, S.M. Aktarer, G. Ipekoǧlu, G. Çam, Microstructure and mechanical properties of friction stir welded St52 steel joints, Proceedings of the 16th International Materials Symposium “IMSP’2016”, Congress and Cultural Center of Pamukkale University, Denizli, Turkey, 2016, 1500-1507 (in Turkish).
  • [69] A.N. Siddiquee, S. Pandey, Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel, International Journal of Advanced Manufacturing Technology 73 (2014) 479-486.
  • [70] R. Nandan, G.G. Roy, T.J. Lienert, T. DebRoy, Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel, Science and Technology of Welding and Joining 11/5 (2006) 526-537.
  • [71] Y.C. Chen, H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K. Matsubayashi, Y. Michishita, Y. Fujiya, J. Katoh, Friction stir processing of 316L stainless steel plate, Journal of Nuclear Materials 420 (2012) 497-500.
  • [72] M. Hajian, A. Abdollah-Zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, M. Shokouhimehr, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Materials & Design 67 (2015) 82-94.
  • [73] J. Ha, H. Li, Z. Zhu, F. Barbaro, L. Jiang, H. Xu, L. Ma, Microstructure and mechanical properties of friction stir welded 18Cr-2Mo ferritic stainless steel thick plate, Materials & Design 63 (2014) 238-246.
  • [74] M. Imam, R. Ueji, H. Fujii, Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel, Materials Science and Engineering A 636 (2015) 24-34.
  • [75] H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, J.Z. Li, Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel, Materials & Design 84 (2015) 291-299.
  • [76] M.B. Bilgin, C. Meran, The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels, Materials & Design 33 (2012) 376-383.
  • [77] H.-H. Cho, H.N. Han, S.-T. Hong, J.-H. Park, Y.-J. Kwon, S.-H. Kim, R.J. Steel, Microstructural analysis of friction stir welded ferritic stainless steel, Materials Science and Engineering A 528 (2011) 2889-2894.
  • [78] H.B. Cui, G.M. Xie, Z.A. Luo, J. Ma, G.D. Wang, R.D.K. Misra, Microstructural evolution and mechanical properties of the stir zone in friction stir processed AISI201 stainless steel, Materials & Design 106 (2016) 463-475.
  • [79] M. Esmailzadeh, M. Shamanian, A. Kermanpur, T. Saeid, Microstructure and mechanical properties of friction stir welded lean duplex stainless steel, Materials Science and Engineering A 561 (2013) 486-491.
  • [80] S.S. Rezaei-Nejad, A. Abdollah-Zadeh, M. Hajian, F. Kargar, R. Seraj, Formation of nanostructure in AISI 316L austenitic stainless steel by friction stir processing, Procedia Materials Science 11 (2015) 397-402.
  • [81] S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, Friction-stir welding of ultrafine grained austenitic 304L stainless steel produced by martensitic thermomechanical processing, Materials & Design 76 (2015) 130-140.
  • [82] S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, H. Jabbari, Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless stel: Microstructure and mechanical behavior characterization, Materials Characterization 109 (2015) 138-151.
  • [83] T. Saeid, A. Abdollah-Zahed, T. Shibayanagi, K. Ikeuchi, H. Assadi, On the formation of grain structure during friction stir welding of duplex stainless steel, Materials Science and Engineering A 527 (2010) 6484-6488.
  • [84] T.F.A. Santos, T.F.C. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds, Engineering Fracture Mechanics 77 (2010) 2937-2945.
  • [85] H. Sarlak, M. Atapour, M. Esmailzadeh, Corrosion behaviour of friction stir welded lean duplex stainless steel, Materials & Design 66 (2015) 209-216.
  • [86] F. Gratecap, M. Girard, S. Marya, G. Racineux, Exploring material flow in friction stir welding: Tool eccentricity and formation of banded structures, International Journal of Material Forming 5/2 (2012) 99-107.
  • [87] C. Tingey, A. Galloway, A. Toumpisa, S. Cater, Effect of tool centreline deviation on the mechanical properties of friction stir welded DH36 steel, Materials & Design 65 (2015) 896-906.
  • [88] T. Miura, R. Ueji, H. Komine, J. Yanagimoto, Stabilization of austenite in low carbon Cr-Mo steel by high speed deformation during friction stir welding, Materials & Design 90 (2016) 915-921.
  • [89] D. Wang, D.R. Ni, B.I. Xiao, Z.Y. Ma, W. Wang, K. Yang, Microstructural evolution and mehcanical properties of friction stir welded joint of Fe-Cr-MnMo-N austenite stainless steel, Materials & Design 64 (2014) 355-359.
  • [90] Y. Miyano, H. Fujii, Y. Sun, Y. Katada, S. Kuroda, O. Kamiya, Mechanivcal properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel, Materials Science and Engineering A 528 (2011) 2917-2921.
  • [91] M. Mehranfar, K. Dehghani, Producing nanostructured super-austenitic steels by friction stir processing, Materials Science and Engineering A 528 (2011) 3404-3408.
  • [92] T. Miura, R. Ueji, H. Fujii, Enhanced tensile properties of Fe-Ni-C steel resulting from stabilization of austenite by friction stir welding, Journal of Materials Processing Technology 216 (2015) 216-222.
  • [93] J.J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, H.S.C. Park, S. Hirano, Grain structure development during friction stir welding of single-crystal austenitic stainless steel, Metallurgical and Materials Transactions A 44 (2013) 3157-3166.
  • [94] Y.C. Chen, H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K. Matsubayashi, Y. Michishita, Y. Fujiya, J. Katoh, Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel, Journal of Nuclear Materials 420 (2012) 497-500.
  • [95] H. Kokowa, S.H.C. Park, Y.S. Sato, K. Okamoto, S. Hirano, M. Inagaki, Microstructures in friction stir welded 304 austenitic stainless steel, Welding in the World 49/3-4 (2005) 34-40.
  • [96] H. Aydin, T.W. Nelson, Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input, Materials Science and Engineering A 586 (2013) 313-322.
  • [97] V. Manvatkar, A. De, L. Svensson, T. DebRoy, Cooling rates and peak temperatures during friction stir welding of a high-carbon steel, Scripta Materialia 94 (2015) 36-39.
  • [98] M. Ghosh, K. Kumar, R.S. Mishra, Analysis of microstructural evolution during friction stir welding of ultrahigh-strength steel, Scripta Materialia 63 (2010) 851-854.
  • [99] P. Xue, Y. Komizo, R. Ueji, H. Fujii, Enhanced mechanical properties in friction stir welded low alloy steel joints via structure refining, Materials Science and Engineering A 606 (2014) 322-329.
  • [100] K. Yabuuchi, N. Tsuda, A. Kimura, Y. Morisada, H. Fujii, H. Seriwaza, S. Nogami, A. Hasegawa, T. Nagasaka, Effects of tool rotational speed on the mechanical properties and microstructure of friction stir welded ODS steel, Materials Science and Engineering A 595 (2014) 291-296.
  • [101] A.K. Lakshminarayanan, V. Balasubramanian, An assessment of microstructure, hardnerss, tensile and impact strength of friction stir welded ferritic stainless steel joints, Materials & Design 31 (2010) 4592-4600.
  • [102] P.L. Threadgill, R. Johnson, Progress in friction stir welding of steels, TWI Technical Report 815/2004, Great Abington, U.K., 2004.
  • [103] R. Ramesh, I. Dinaharan, R. Kumar, E.T. Akinlabi, Microstructure and mechanical characterization of friction stir welded high strength low alloy steels, Materials Science and Engineering A 687 (2017) 39-46.
  • [104] L.Y. Wei, T.W. Nelson, Correlation of microstructures and process variables in FSW HSLA65 steel, Welding Journal 90 (2011) 95-101.
  • [105] L.Y. Wei, T.W. Nelson, Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel, Materials Science and Engineering A 556 (2012) 51-59.
  • [106] S.R. Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao, Effect of tool shoulder diameter on stir zone characteristics of friction stir-welded HSLA steel joints, Transactions of the Indian Institute of Metals 69/10 (2016) 1861-1869.
  • [107] T.F.A. Santos, H.S. Idagawa, A.J. Ramirez, Thermal history in UNS S32205 duplex stainless steel friction stir welds, Science and Technology of Welding and Joining 19 (2014) 150-156.
  • [108] J.A. Avila, J. Rodriguez, P.R. Mei, A.J. Ramirez, Microstructure and fracture toughness of multipass friction stir welded joints of API-5L-X80 steel plates, Materials Science and Engineering A 673 (2016) 257-265.
  • [109] T.F.A. Santos, E.A.T. López, E.B. da Fonseca, A.J. Ramirez, Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance, Materials Research 19/1 (2016) 117-131.
  • [110] E. Gharibshahiyan, A.H. Raouf, N. Parvin, Microstructural evolution in friction stir welded API 5L-X52 steel, International Advanced Research Journal in Science, Engineering and Technology 2/11 (2013) 64-70.
  • [111] M. Magnani, M. Terada, A.O. Lino, V.P. Tallo, E.B. da Fonseca, T.F.A. Santos, A.J. Ramirez, Microstructural and electrochemical characterization of friction stir welded duplex stainless steels, International Journal of Electrochemical Science 9 (2014) 2966-2977.
  • [112] A.P. Reynolds, M. Posada, J. DeLoach, M.J. Skinner, J. Halpin, T.J. Lienert, Proceedings of the 3rd International Symposium “Friction stir welding”, Kobe, Japan, 2001.
  • [113] M. Posada, J. Deloach, A.P. Reynolds, M.J. Skinner, J. Halpin, in: Friction stir welding and processing (Eds. K.V. Jata et al.), Warrendale, PA, 2001, 159.
  • [114] C.D. Sorensen, T.W. Nelson, Proceedings of the 7th International Conference “Trends in welding research”, Pine Mountain, Georgia, USA, 2005.
  • [115] C.J. Sterling, T.W. Nelson, C.D. Sorensen, R.J. Steel, S.M. Packer, in; Friction stir welding and processing II, (Eds. K.V. Jata et al.), Warrendale, PA, 2003, 165-171.
  • [116] P.J. Konkol, Proceedings of the 4th International Symposium “Friction stir welding”, Park City, UT, USA, 2003.
  • [117] M. Posada, J. Deloach, A.P. Reynolds, J. Halpin, Proceedings of the 6th International Conference “Trends in welding research”, Materials Park, OH, 2003, 307-312.
  • [118] W.M. Thomas, D.J. Staines, E.R. Watts, I.M. Norris, The simultaneous use of two or more friction stir welding tools, Abington, Cambridge, TWI published on the Internet 13 January 2005.
  • [119] P.L. Threadgill, R. Johnson, Progress in friction stir welding of steels, TWI technical report 815/2004, Great Abington, UK, 2004.
  • [120] S. Mandal, J. Rice, A.A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, Journal of Materials Processing Technology 203 (2008) 411-419.
  • [121] M. Atapour, H. Sarlak, M. Esmailzadeh, Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints, International Journal of Advanced Manufacturing Technology 83 (2016) 721-728.
  • [122] D.H. Kang, H.W. Lee, Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds, Corrosion Science 74 (2013) 396-407.
  • [123] E.B. da Fonseca, T.F.A. Santos, S.T. Button, A.J. Ramirez, Physical simulation of a duplex stainless steel friction stir welding by the numerical and experimental analysis of hot torsion tests, Metallurgical and Materials Transactions A 47 (2016) 4543-4552.
  • [124] T.F.A. Santos, H.S. Idagawa, A.J. Ramirez, Thermal history in UNS S32205 duplex stainless steel friction stir welds, Science and Technology of Welding and Joining 19/2 (2014) 150-156.
  • [125] H.-H. Cho, S.H. Kang, S.-H. Kim, K.H. Oh, H.J. Kim, W.-S. Chang, H.N. Han, Microstructural evolution in friction stir welding of high-strength linepipe steel, Materials & Design 34 (2012) 258-267
  • [126] S.A. Khodir, Y. Morisada, R. Ueji, H. Fujii, Microstructures and mechanical properties evolution during friction stir welding of SK4 high carbon steel alloy, Materials Science and Engineering A 558 (2012) 572-578.
  • [127] B.W. Ahn, D.H. Choi, D.J. Kim, S.B. Jung, Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool, Materials Science and Engineering A 532 (2012) 476-479.
  • [128] M. Jafarzadegan, A.H. Feng, A. Abdollah-Zadeh, T. Saeid, J. Shen, H. Assadi, Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel, Materials Characterization 74 (2012) 28-41.
  • [129] T.W. Nelson, S.A. Rose, Controlling hard zone formation in friction stir processed HSLA steel, Journal of Materials Processing Technology 231 (2016) 66-74.
  • [130] A. Tribe, T.W. Nelson, Study on the fracture toughness of friction stir welded API X80, Engineering Fracture Mechanics 150 (2015) 58-69.
  • [131] D.-H. Choi, C.-Y. Lee, B.-W. Ahn, J.-H. Choi, Y.-M. Yeon, K. Song, S.-G. Hong, W.-B. Lee, K.-B. Kang, S.-B. Jung, Hybrid friction stir welding of highcarbon steel, Journal of Materials Science and Technology 27/2 (2011) 127-130.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88a3e3e6-4294-420c-bea3-e6b5593b3b42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.