Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article describes the process of signal conditioning for examination of acoustic noise correlation properties in shallow water. Knowledge of these properties is very important for the design processes of passive and active hydroacoustic systems. This paper focuses on the above issue from the point of view of passive sonar. In sonar systems, signal processing algorithms operate on both useful acoustic signals, and accompanying noise. Quantitative estimation of the correlation properties of acoustic noise enables an accurate determination of detection conditions. This will verify the validity of certain commonly used simplified models in simulations of hydroacoustic systems. The article presents how the measurement system was constructed, and the structure of files for storing measurement data. It describes the processing algorithm developed for the measured signal conditioning. Research results are presented and discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
335--340
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Gdansk University of Technology Faculty of Electronics, Telecommunications and Informatics Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdansk University of Technology Faculty of Electronics, Telecommunications and Informatics Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] W. S. Burdic, Underwater acoustic system analysis, Prentice-Hall, INC., p. 214-219, p. 297-318, Englewood Cliffs, 1984.
- [2] I. Gloza, Identification Methods of Underwater Noise Sources Generated by Small Ships, Acta Physica Polonica A, 119, 6A, p. 961-965, 2011.
- [3] I. Gloza, K. Buszman, The Multi-Influence Passive Module for Underwater Environment Monitoring, Hydroacoustics, 14, p. 47-54, Gdansk, 2011.
- [4] I. Gloza, K. Buszman, K. Listewnik, The Passive Module for Underwater Environment Monitoring, Proceedings of the 10th European Conference on Underwater Acoustics, p. 1787-1793, Istanbul, 2010.
- [5] G. Grelowska, E. Kozaczka, W. Szymczak, Underwater Noise Generated by Small Ships in the Shallow Sea, Archives of Acoustics, 38, 3, p. 351-356, Warszawa, 2013.
- [6] I. Kirsteins, P. Clark, L. Atlas, Maximum likelihood estimation of propeller noise modulation characteristics, Proceedings: 4th International Conference and Exhibition on Underwater Acoustic Measurements: Technologies & Results, Kos Island, 2011.
- [7] E. Kozaczka, G. Grelowska, Shipping low frequency noise and its propagation in shallow water, Acta Physica Polonica A, 119, 6A, p. 1009-1012, 2011.
- [8] E. Kozaczka, G. Grelowska, Shipping noise, Archives of Acoustics, 29, 2, p. 169-176, Warszawa, 2004.
- [9] K. Listewnik, Experimental Investigation of Hydroacoustic Multi-Sensor Array in Water Tank, Hydroacoustics, 14, p. 127-134, Gdansk, 2011.
- [10] J. Marszal, Experimental Study of Silent Sonar, Archives of Acoustics, 39, 1, p. 103- 115, Warszawa, 2014.
- [11] J. Marszal, R. Salamon, Distance Measurement Errors, in Silent FM-CW Sonar with match Filtering, Metrology and Measurement Systems, XIX, 2, p. 321-332, 2012.
- [12] Natanael Nunes de Moura, Eduardo Simas Filho and José Manoel de Seixas, Independent Component Analysis for Passive Sonar Signal Processing, Advances in Sonar Technology, Sergio Rui Silva (Ed.), InTech, 2009.
- [13] R. Salamon, Systemy hydrolokacyjne, Gdańskie Towarzystwo Naukowe, Gdańsk, 2006
- [14] A. D. Waite, Sonar for Practising Engineers, Third Edition, John Wiley & Sons, LTD., Chichester, 2002.
- [15] The NI TDMS File Format, http://www.ni.com/white-paper/3727/en/, National Instruments, 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88a39364-f42b-4fa9-90eb-c64d4195861c