Identyfikatory
Warianty tytułu
Wpływ biodegradowalnej dekstryny LU-1400-2 na wybrane właściwości zapraw cementowych
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
Abstrakty
This paper presents the results of a study on the effect of fully biodegradable modified starch in the form of LU-1400-2 dextrin (denoted d2) and two commercial plasticizers P1 and P2 on selected properties of cement mortars. The studied cement mortar was enriched with 0.25%, 0.30%, 0.35%, and 0.40% d2 dextrin, relative to the weight of the cement. The tests carried out indicatethat the addition of dextrin to cement mortars results in an increase in strength (a 9% increase was observed with 0.25% dextrin) and liquefaction of the mixtures. However, commercial plasticizers were found to decrease compressive strength. Starch derivatives are a type of natural plasticizer that is more environmentally sustainable than other types. They are produced from renewable sources, such as plants, and their production generates less waste and involves low greenhouse gas emissions. They are produced from renewable sources, such as plants, and their production generates less waste and involves low greenhouse gas emissions. Preliminary studies suggest that dextrins have great potential as natural plasticizers. The increasing popularity of natural plasticizers in the chemical and construction industries is due to a growing interest in sustainability and concern about the harmful effects of traditional chemical plasticizers.
Czasopismo
Rocznik
Tom
Strony
art. no. 11
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- Department of Construction and Geoengineering, Poznan University of Life Sciences, Piatkowska 94 E, 60-649 Poznan, Poland
Bibliografia
- 1. B. Radomski, F. Kowalski, and T. Mróz, “The Direct-Contact Gravel, Ground, Air Heat Exchanger—Application in Single-Family Residential Passive Buildings,” Energies, vol. 15, no. 17, p. 6110, 2022.
- 2. B. Radomski and T. Mróz, “Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study,” Energies, vol. 16, no. 8, p. 3475, 2023.
- 3. B. Radomski and T. Mróz, “The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study,” Energies, vol. 14, no. 16, p. 5162, 2021.
- 4. B. Radomski and T. Mróz, “The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach,” Energies, vol. 14, no. 15, p. 4715, 2021.
- 5. A. Dębicka, K. Olejniczak, B. Radomski, D. Kurz, and D. Poddubiecki, “Renewable Energy Investments in Poland: Goals, Socio-Economic Benefits, and Development Directions,” Energies, vol. 17, no. 10, p. 2374, 2024.
- 6. A. Szymczak-Graczyk, I. Laks, B. Ksit, and M. Ratajczak, “Analysis of the impact of omitted accidental actions and the method of land use on the number of construction disasters (a case study of Poland),” Sustainability, vol. 13, no. 2, p. 618, 2021.
- 7. A. Szymczak-Graczyk, G. Gajewska, I. Laks, and W. Kostrzewski, “Influence of variable moisture conditions on the value of the thermal conductivity of selected insulation materials used in passive buildings,” Energies, vol. 15, no. 7, p. 2626, 2022.
- 8. A. Szymczak-Graczyk, Z. Walczak, B. Ksit, and Z. Szyguła, “Multi-criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study),” Bulletin of the Polish Academy of Sciences Technical sciences, pp. e140373–e140373, 2022.
- 9. W. Buczkowski, A. Szymczak-Graczyk, and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal cross-section,” Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 65, no. 6, pp. 799–804, 2017.
- 10. B. Ksit, A. Szymczak-Graczyk, M. Thomas, and R. Pilch, “Implementation of the results of experimental studies with the use of the sclerometric method of plane elements in wooden buildings,” Energies, vol. 15, no. 18, p. 6660, 2022.
- 11. I. Laks, Z. Walczak, and N. Walczak, “Fuzzy analytical hierarchy process methods in changing the damming level of a small hydropower plant: Case study of Rosko SHP in Poland,” Water Resources and Industry, vol. 29, p. 100204, 2023.
- 12. I. Laks, M. Sojka, Z. Walczak, and R. Wróżyński, “Possibilities of using low quality digital elevation models of floodplains in hydraulic numerical models,” Water, vol. 9, no. 4, p. 283, 2017.
- 13. I. Laks, T. Kałuża, M. Sojka, Z. Walczak, and R. Wróżyński, “Problems with modelling water distribution in open channels with hydraulic engineering structures,” Rocznik Ochrona Środowiska, vol. 15, pp. 245–257, 2013.
- 14. I. Laks, K. Szoszkiewicz, and T. Kałuża, “Analysis of in situ water velocity distributions in the lowland river floodplain covered by grassland and reed marsh habitats - a case study of the bypass channel of Warta River (Western Poland),” Journal of Hydrology and Hydromechanics, vol. 65, no. 4, pp. 325–332, Dec. 2017.
- 15. I. Laks and Z. Walczak, “Efficiency of polder modernization for flood protection. case study of golina polder (Poland),” Sustainability, vol. 12, no. 19, p. 8056, 2020.
- 16. R. Mazur, T. Kałuża, J. Chmist, N. Walczak, I. Laks, and P. Strzeliński, “Influence of deposition of fine plant debris in river floodplain shrubs on flood flow conditions–The Warta River case study,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 94, pp. 106–113, 2016.
- 17. T. Kałuża, A. Radecki-Pawlik, K. Szoszkiewicz, K. Plesiński, B. Radecki-Pawlik, and I. Laks, “Plant basket hydraulic structures (PBHS) as a new river restoration measure,” Science of the total environment, vol. 627, pp. 245–255, 2018.
- 18. M. Sybis, E. Konował, and K. Prochaska, “Dextrins as Green and Biodegradable Modifiers of Physicochemical Properties of Cement Composites,” Energies, vol. 15, no. 11, p. 4115, 2022.
- 19. M. Sybis and E. Konował, “Influence of Modified Starch Admixtures on Selected Physicochemical Properties of Cement Composites,” Materials, vol. 15, no. 21, p. 7604, 2022.
- 20. C. D. Nwa-David, “Performance of potato starch admixture on fresh and hardened behaviours of concrete at varied mix design ratios,” Engineering and Technology Journal, pp. 1–8, 2024.
- 21. W. A. Abbas and H. M. Mohsen, “Properties and Behavior of Starch Biopolymer Concrete,” Engineering and Technology Journal, vol. 38, no. 10A, pp. 1414–1420, 2020.
- 22. V. Vishwakarma, U. Sudha, D. Ramachandran, B. Anandkumar, R. George, K. Kumari, R. Preetha, U. K. Mudali, and C. Pillai, “Enhancing antimicrobial properties of fly ash mortars specimens through nanophase modification,” Materials Today: Proceedings, vol. 3, no. 6, pp. 1389–1397, 2016.
- 23. E. Konował, M. Sybis, A. Modrzejewska-Sikorska, and G. Milczarek, “Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar,” International Journal of Biological Macromolecules, vol. 104, pp. 165–172, 2017.
- 24. A. Modrzejewska-Sikorska, E. Konował, Ł. Klapiszewski, G. Nowaczyk, S. Jurga, T. Jesionowski, and G. Milczarek, “Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica,” International Journal of biological macromolecules, vol. 103, pp. 403–408, 2017.
- 25. A. Modrzejewska-Sikorska, M. Robakowska, E. Konował, H. Gojzewski, Ł. Gierz, B. Wieczorek, Ł. Warguła, and W. Łykowski, “Lignin and Starch Derivatives with Selenium Nanoparticles for the Efficient Reduction of Dyes and as Polymer Fillers,” Coatings, vol. 13, no. 7, p. 1185, 2023.
- 26. A. Modrzejewska-Sikorska and E. Konował, “Silver and gold nanoparticles as chemical probes of the presence of heavy metal ions,” Journal of Molecular Liquids, vol. 302, p. 112559, 2020.
- 27. A. Peschard, A. Govin, P. Grosseau, B. Guilhot, and R. Guyonnet, “Effect of polysaccharides on the hydration of cement paste at early ages,” Cement and Concrete Research, vol. 34, no. 11, pp. 2153–2158, 2004.
- 28. K. Pycia, L. Juszczak, D. Gałkowska, R. Socha, and G. Jaworska, “Maltodextrins from chemically modified starches. Production and characteristics,” Starch‐Stärke, vol. 69, no. 5–6, p. 1600199, 2017.
- 29. E. Konował, G. Lewandowicz, J. Le Thanh-Blicharz, and K. Prochaska, “Physicochemical characterisation of enzymatically hydrolysed derivatives of acetylated starch,” Carbohydrate polymers, vol. 87, no. 2, pp. 1333–1341, 2012.
- 30.E. Konował, J. Sulej-Chojnacka, and K. Prochaska, “The influence of types of dual modified starches on the enzymatic hydrolysis in the continuous recycle membrane reactor,” Desalination and Water Treatment, vol. 14, no. 1–3, pp. 94–100, 2010.
- 31.K. Prochaska, E. Konował, J. Sulej-Chojnacka, and G. Lewandowicz, “Physicochemical properties of cross-linked and acetylated starches and products of their hydrolysis in continuous recycle membrane reactor,” Colloids and Surfaces B: Biointerfaces, vol. 74, no. 1, pp. 238–243, 2009.
- 32.R. S. Campos and G. F. Maciel, “Test protocol and rheological model influence on determining the rheological properties of cement pastes,” Journal of Building Engineering, vol. 44, p. 103206, 2021.
- 33.F. Han, S. Pu, Y. Zhou, H. Zhang, and Z. Zhang, “Effect of ultrafine mineral admixtures on the rheological properties of fresh cement paste: A review,” Journal of Building Engineering, vol. 51, p. 104313, 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-889febd9-2330-42aa-a849-19aada606d52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.