PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of the Essential Characteristics of 2,4-Dinitroanisole

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the development of weapons and ammunition to achieve more powerful and safer functional systems, 2,4-dinitroanisole (DNAN), used as an insensitive melt-cast matrix explosive, has received widespread attention. Various countries have conducted significant research and developed a series of DNAN-based explosive formulations in recent years. However, some inherent limitations of DNAN have enormously restricted its comprehensive application in weapons. In this paper, the progress of DNAN research in recent years is systematically reviewed from the aspects of its essential characteristics, such as physical properties (melting point, shrinkage, irreversible expansion, solubility, and mechanical properties), sensitivity and safety, stability, compatibility, and oxygen balance and energy. The advantages and disadvantages of DNAN are analyzed, and methods to solve these limitations are described. Furthermore, several important directions to be studied in future research are highlighted, including the study of DNAN binary eutectic mixtures mechanisms, control of crystal transformation, and improvements in mechanical properties.
Rocznik
Strony
50--74
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
  • Composite Explosive Research Department, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • [1] Ravi, P.; Badgujar, D.M.; Gore, G.M.; Tewari, S.P.; Sikder, A.K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36(5): 393-403; DOI: 10.1002/prep.201100047.
  • [2] Li, J.S.; Chen, J.J.; Hwang, C.C.; Lu, K.T.; Yeh, T.F. Study on Thermal Characteristics of TNT Based Melt-Cast Explosives. Propellants Explos. Pyrotech. 2019, 44(10): 1270-1281; DOI: 10.1002/prep.201900078.
  • [3] Boddu, V.M.; Abburi, K.; Maloney, S.W.; Damavarapu, R. Thermophysical Properties of an Insensitive Munitions Compound, 2,4-Dinitroanisole. J. Chem. Eng. Data. 2008, 53(5): 1120-1125; DOI: 10.1021/je7006764.
  • [4] Boddu, V.M.; Abburi, K.; Fredricksen, A.J.; Maloney, S.W.; Damavarapu, R. Equilibrium and Column Adsorption Studies of 2,4-Dinitroanisole (DNAN) on Surface Modified Granular Activated Carbons. Environ. Technol. 2009, 30(2): 173-181; DOI: 10.1080/09593330802422993.
  • [5] Annamalai, P. Ecotoxicity and Soil Persistence of 2,4-Dinitroanisole (DNAN) – an Ingredient in Insensitive Munitions Explosive Fills. Doctoral dissertation, University of South Australia, Australia, 2016.
  • [6] Johnson, M.S.; Eck, W.S.; Lent, E.M. Toxicity of Insensitive Munition (IMX) Formulations and Components. Propellants Explos. Pyrotech. 2017, 42(1): 9-16; DOI: 10.1002/prep.201600147.
  • [7] Hawari, J.; Monteil-Rivera, F.; Perreault, N.N.; Halasz, A.; Paquet, L.; RadovicHrapovic, Z; Deschamps, S.; Thiboutot, S.; Ampleman, G. Environmental Fate of 2,4-Dinitroanisole (DNAN) and its Reduced Products. Chemosphere. 2015, 119: 16-23; DOI: 10.1016/j.chemosphere.2014.05.047.
  • [8] Olivares, C.I.; Abrell, L.; Khatiwada, R.; Chorover, J.; Sierra-Alvarez, R.; Field, J.A. (Bio)transformation of 2,4-Dinitroanisole (DNAN) in Soils. J. Hazard. Mater. 2016, 304: 214-221; DOI: 10.1016/j.jhazmat.2015.10.059.
  • [9] Meng, J.J.; Zhou, L.; Cao, T.T.; Wang, Q.H. Research Progress of 2,4-Dinitroanisolebased Melt-Cast Explosives. Chin. J. Energ. Mater. 2020, 28(1): 13-24; DOI: 10.11943/CJEM2018359.
  • [10] Lee, K.E.; Balas-Hummers, W.A.; Di Stasio, A.R.; Patel, C.H.; Samuels, P.J.; Roos, B.D.; Fung, V. Qualification Testing of the Insensitive TNT Replacement Explosive IMX-101. Proc. 2010 Insensitive Munitions and Energetic Materials Technology Symp., Munich, Germany, 2010.
  • [11] Singh, S.; Jelinek, L.; Samuels, P.J.; Di Stasio, A.R.; Zunino, L. IMX-104 Characterization for DoD Qualification. Proc. 2010 Insensitive Munitions and Energetic Materials Technology Symp., Munich, Germany, 2010.
  • [12] Wang, Q.H. Overview of Carrier Explosive for Melt-Cast Composite Explosive. Chin. J. Explos. Propellants 2011, 34(5): 25-28; DOI: 10.3969/j.issn.1007-7812. 2011.05.007.
  • [13] Niu, G.T.; Jin, D.Y.; Luo, Y.M.; Cao, S.T.; Wang, Q.H. Technical Characteristics of DNAN-based Melt-casting Explosives. Ordnance Industry Automation 2014, 33(7): 86-88; DOI: 10.7690/bgzdh.2014.07.024.
  • [14] Samuels, P. Characterization of 2,4-Dinitroanisole (DNAN). Proc. 2012 Insensitive Munitions and Energetic Materials Technology Symp., Las Vegas, NV, 2012.
  • [15] Nair, U.R.; Asthana, S.N.; Rao, A.S.; Gandhe, B.R. Advances in High Energy Materials. Def. Sci. J. 2010, 60(2): 137-151.
  • [16] John, N.; Nicolich, S. PAX-21, PAX-25 and PAX-28: A Family of New Low Cost Insensitive Melt Pour Explosives. Proc. 6th Australian Explosive Ordnance Symp., Canberra, Australia, 2003.
  • [17] Wang, H.X.; Wang, H.; Jiang, F.F.; Zhao, K.; Xu, S. Safety Analysis of Melt-Cast Technology for DNAN Explosive. Ordnance Industry Automation 2014, 33(7): 72-74; DOI: 10.7690/bgzdh.2014.07.020.
  • [18] Wang, H.X.; Wang, X.F.; Luo, Y.L.; Jiang, F.F. Cook-off Test of DNAN Explosive. Chin. J. Energ. Mater. 2009, 17(2): 183-186; DOI: 10.3969/j.issn.1006-9941.2009.02.013.
  • [19] Liu, R.P.; Luo, Y.M.; Wang, H.X.; Gao, J.; Jiang, Q.L.; Yang, F. Experimental Study and Numerical Simulation on Temperature and Shrinkage Porosity of TNT, DNAN and DNTF During Solidification Process. Chin. J. Explos. Propellants 2016, 39(3): 43-47; DOI: 10.14077/j.issn.1007-7812.2016.03.008.
  • [20] Luo, Y.M.; Jiang, Q.L.; Zhao, K.; Wang, H. Analysis on Difference of Solidification Behavior of DNAN and TNT. Chin. J. Explos. Propellants. 2015, 38(5): 37-40; DOI: 10.14077/j.issn.1007-7812.2015.05.007.
  • [21] Meng, J.J.; Zhou, L.; Jin, D.Y.; Cao, S.T.; Wang, W.H. Rheological Properties of DNAN/HMX Melt-Cast Explosives. Chin. J. Energ. Mater. 2018, 26(8): 677-685; DOI: 10.11943/CJEM2017374.
  • [22] Parry, M.A.; Billon, H.H. A Note on the Coefficient of Viscosity of Pure Molten 2,4,6-Trinitrotoluene (TNT). Rheol. Acta 1988, 27(6): 661-663; DOI: 10.1007/BF01337463.
  • [23] Samuels, P. Irreversible Growth of DNAN Based Formulations. Proc. 2012 Insensitive Munitions and Energetic Materials Technology Symp., Las Vegas, NV, 2012.
  • [24] Klapötke, T.M.; Penger, A.; Pflüger, C.; Stierstorfer, J. Melt-Cast Materials: Combining the Advantages of Highly Nitrated Azoles and Open-Chain Nitramines. New J. Chem. 2016, 40(7): 6059-6069; DOI: 10.1039/C6NJ00202A.
  • [25] Chen, F.; Liu, Y.C.; Wang, Y.; Zhang, Q.H. Review on Melt-Cast Carrier Explosives. Chin. J. Energ. Mater. 2020, 28(11): 1109-1119; DOI: 10.11943/CJEM2020071.
  • [26] Jackson, T.L.; Zhang, J. Density-based Kinetics for Mesoscale Simulations of Detonation Initiation in Energetic Materials. Combust Theor. Model. 2017, 21(4): 749-769; DOI: 10.1080/13647830.2017.1296975.
  • [27] Fawcett-Hirst, W.; Temple, T.J.; Ladyman, M.K.; Coulon, F. A Review of Treatment Methods for Insensitive High Explosive Contaminated Wastewater. Heliyon 2021, 7: 1-13; DOI: 10.1016/j.heliyon.2021.e07438.
  • [28] Rong, Y.B. Research of HMX Gradation on the Properties of TNT Based and DNAN/TNT Based Melt-Cast Explosives. Doctoral dissertation, Nanjing University of Science & Technology, China, 2018.
  • [29] Davies, P.J.; Provatas, A. Characterization of 2,4-Dintroanisole: an Ingredient for Use in Low Sensitivity Melt Cast Formulations. Defence Science and Technology Organisation, Report No. DSTO-TR-1904, 2006.
  • [30] Meng, J.J.; Zhou, L.; Jin, D.Y.; Niu, L.; Wang, Q.H. Effect of Functional Additives on Interface Bonding Strength of DNAN/RDX Melt-Cast Explosives. Chin. J. Energ. Mater. 2018, 26(9): 765-771; DOI: 10.11943/CJEM2018061.
  • [31] Meng, J.J.; Luo, Y.M.; Niu, G.T.; Wang, H.X.; Yang, F. Effect of Additives on the Interface Binding Strength of DNAN/HMX Melt-Cast Explosives. J. Energ. Mater. 2020, 38(4): 467-482; DOI: 10.1080/07370652.2020.1734689.
  • [32] Sun, S.H.; Zhang, H.B.; Xu, J.J.; Wang, S.M.; Zhu, C.H.; Wang, H.F; Ding, R.Q.; Yu, Z.H.; Sun, J. Two Novel Melt-Cast Cocrystal Explosives Based on DNAN with Significantly Decreased Melting Point. Cryst. Growth Des. 2019, 19(12): 6826-6830; DOI: 10.1021/acs.cgd.9b00680.
  • [33] Liu, C.L.; Song, X.L.; Huang, H.; Wang, Y.; Liu, S. Binary Phase Diagram and Eutectic System for DNAN/PETN. J. Academy Armored Force Eng. 2019, 33(2): 85-89; DOI: 10.3969 /j.issn.1672-1497.2019.02.015.
  • [34] Oxley, J.C.; Smith, J.L.; Brown, A.C. Eutectics of Erythritol Tetranitrate. J. Phys. Chem. C 2017, 121(30): 16137-16144; DOI: 10.1021/acs.jpcc.7b04667.
  • [35] Kou, Y.; Song, X.L.; Liu, L.X.; Wang, Y.; Liu, C.L.; Guo, K.G. Preparation and Properties of DNAN/TNAZ Lowest Eutectic Mixture. Chin. J. Explos. Propellants 2020, 43(5): 531-536; DOI: 10.14077/j.issn.1007-7812.201911006.
  • [36] Gao, J.; Wang, H.; Luo, Y.M.; Wang, H.X.; Wang, W. Study on Binary Phase Diagram of DNAN/DNTF Mixed System and its Mechanical Sensitivity. Chin. J. Explos. Propellants 2020, 43(2): 213-218; DOI: 10.14077/j.issn.1007-7812.201811018.
  • [37] Atwood, A.I.; Ford, K.P.; Gennrich, M.T.; Buidang, Q.T.; Wheeler, C.J.; Woods, E.; Daniels, A.L. Melt Cast Explosive Friability Studies. Int. J. Energ. Mater. Chem. Prop. 2012, 11(6): 537-547; DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013007306.
  • [38] Meng, J.J.; Zhang, X.R.; Zhou, L. Simulation of Solidification Process for DNANBased Melt-Cast Explosives. (inChinese) Acta Armamentarii 2013, 34(7): 810-814; DOI: 10. 3969/j.issn.1000-1093. 2013. 07. 002.
  • [39] Sun, D.; Garimella, S.V.; Singh, S. Numerical and Experimental Investigation of Solidification Shrinkage. Numer. Heat Tr. A: Appl. 2007, 52(2): 145-162; DOI: 10.1080/10407780601115079.
  • [40] Meng, J.J.; Zhou, L.; Zhang, X.R. Effect of Pressure of the Casting Vessel on the Solidification Characteristics of a DNAN/RDX Melt-Cast Explosive. J. Energ. Mater. 2017, 35(4): 385-396; DOI: 10.1080/07370652.2016.1201172.
  • [41] Liu, W. Research on the Melt-Cast Explosives Quality under Solidification Processes. Master dissertation, North University of China, 2016.
  • [42] Niu, G.T.; Jin, D.Y.; Wang, Q.H.; Huang, W.B.; Niu, L. Effect of Charge Structure Charge Quality of Large Size MeIt-Cast Explosive. (in Chinese) Initiators Pyrotech. 2015, 1: 30-33; DOI: HGPI.0.2015-01-008.
  • [43] Manual of Data Requirements and Tests for the Qualification of Explosive Materials for Military Use. Allied Ordnance Publication-7, 2003.
  • [44] Vrcelj, R.M.; Gallagher, H.G.; Sherwood, J.N. Polymorphism in 2-4-6 Trinitrotoluene. Cryst. Growth Des. 2003, 3(6): 1027-1032; DOI: 10.1021/cg0340704.
  • [45] Myint, P.C.; Nichols, A.L. Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures. Ind. Eng. Chem. Res. 2017, 56(1): 387-403; DOI: 10.1021/acs.iecr.6b03697.
  • [46] Alphen, J.V. Die Dimorphie des 2,4-Dinitro-anisols. (in German) Chem. Ber. 1929, 63(1): 94-95; DOI: 10.1002/cber.19300630111.
  • [47] Nyburg, S.C.; Faerman, C.H.; Prasad, L.; Palleros, D.; Nudelman, N. Structures of 2,4-Dinitroanisole and 2,6-Dinitroanisole. Acta Cryst. C. 1987, 43(4): 686-689; DOI: 10.1107/S0108270187094514.
  • [48] Malinovskii, S.T.; Fonar, M.S.; Simonov, Y.A.; Dvorkin, A.A.; Lu’kyanenko, G.G.; Musienko, S. Crystal and Molecular Structures of the Host-Guest Type of Complex of 18-Crown-6 with 2,4-Dinitroanisole and 2-4-Dinitroanisole in the Free State. Kristallografiya 1992, 37(3): 671-677.
  • [49] Xue, G.; Gong, C.R.; Chen, H.Y. Crystal Structure of 2,4-Dinitroanisole, C₇H₆N₂O₅. Z. Kristallogr. 2007, 222(3): 321-322; DOI:10.1524/ncrs.2007.0135.
  • [50] Parmar, M.M.; Khan, O.; Seton, L.; Ford, J.L. Polymorph Selection with Morphology Control Using Solvents. Cryst. Growth Des. 2007, 7(9): 1635-1642; DOI: 10.1021/cg070074n.
  • [51] Jiang, S.; Jansens, P.J.; Hoorst, J.H. Control over Polymorph Formation of o-Aminobenzoic Acid. Cryst. Growth Des. 2010, 10(6): 2541-2547; DOI: 10.1021/cg901257s.
  • [52] Li, H.R.; Yang, Y.L.; Zong, H.H.; Yu, H.J. Crystal Structure and Mechanical Properties of α-DNAN under Temperature-Pressure Coupling. Chin. J. Energ. Mater. 2019, 27(3): 230-235; DOI: 10.11943/CJEM2018132.
  • [53] Deng, Z.Y.; Wang, Y.; Qi, G.Y.; Zhang, Q.H. High-Pressure Structural Stability and Melting Performance of α-2,4-Dinitroanisole. Energ. Mater. Frontiers 2021, 2(4): 272-277; DOI: 10.1016/j.enmf.2021.11.001.
  • [54] Denekamp, C.; Meikler, O.; Zelner, M.; Suwinska, K.; Eichen, Y. Controlling the Crystal Morphology and Polymorphism of 2,4-Dinitroanisole. Cryst. Growth Des. 2018, 18(3): 1350-1357; DOI: 10.1021/acs.cgd.7b01199.
  • [55] Coster, P.L.; Henderson, C.A.; Hunter, S.; Marshall, W.; Pulham, C.R. Explosives at Extreme Conditions: Polymorphism of 2,4-Dinitroanisole. Proc. 14th Int. Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2014.
  • [56] Shi, D.N.; Chen, L.Z.; Wang, J.L.; Chen, J.; Pan, H.X. Thermal Properties Study of Low-melting-point-DNAN and Analysis of Solidification Behavior of Highmelting-point DNAN. Propellants Explos. Pyrotech. 2021, 46(9): 1-7; DOI: 10.1002/prep.202100091.
  • [57] Kay, J.J.; Steill, J.D.; Wiese-Smith, D.; Highley, A. STEBMS Studies of Thermallycycled DNAN. Sandia National Laboratories, Report No. SAND2015-1103PE, 2015.
  • [58] Takahashi, H.; Tamura, R. Low Temperature Phase Transition Induced Biaxial Negative Thermal Expansion of 2,4-Dinitroanisole. Cryst. Eng. Comm. 2015, 17(46): 8888-8896; DOI: 10.1039/C5CE00029G.
  • [59] Ward, D.W.; Coster, P.L.; Hope, K.S.; Pulham, C.R. Controlling a Polymorphic Transition in 2,4-Dinitroanisole Using Crystal Doping. Proc. 18th Int. Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2015.
  • [60] Ward, D.W.; Coster, P.L.; Pulham, C.R. Preventing Irreversible Growth of DNAN by Controlling Its Polymorphism. Proc. 20th Int. Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2017.
  • [61] Grau, H.; Gandzelko, A.; Samuels, P. Solubility Determination of Raw Energetic Materials in Molten 2,4-Dinitroanisole. Propellants Explos. Pyrotech. 2014, 39(4): 604-608; DOI: 10.1002/prep.201300083.
  • [62] Provatas, A.; Davies, P.J. DNAN-A Replacement for TNT in Melt-Cast Formulations. Proc. 2006 Insensitive Munitions and Energetic Materials Technology Symp., Bristol, United Kingdom, 2006.
  • [63] Luo, G.; Huang, H.; Zhang, S.; Wang, P.S.; Cai, Z.Z.; Zhang, Y. Solubility of RDX in Melting DNAN/MNA. Chin. J. Energ. Mater. 2012, 20(4): 437-440; DOI: 10.3969/j.issn.1006-9941.2012.04.012.
  • [64] Meng, J.J.; Zhou, L.; Jin, D.Y.; Niu, G.T.; Wang, Q.H. Effect of Forming Process on Casting Quality of 2,4-Dinitroanisole-based Casting Explosive. (in Chinese) Acta Armamentarii 2018, 39(9): 1719-1726; DOI: 10.3969/j.issn.1000-1093.2018.09.007.
  • [65] Zhao, K.; Wang, H.; Wang, W.; Yang, F.; Liu, R.P.; Zhu, Y.J. Analysis of the Mechanical Properties of DNAN. Chin. J. Explos. Propellants 2016, 39(4): 68-72; DOI: 10.14077/j.issn.1007-7812.2016.04.013.
  • [66] Zhu, Y.J.; Tu, J.; Chang, H.; Su, P.F.; Chen, Z.Q.; Xu, M. Comparative Study on Micromechanical Properties of DNAN and TNT. Chin. J. Explos. Propellants 2017, 40(3): 68-71; DOI: 10.14077/j.issn.1007-7812.2017.03.012.
  • [67] Meng, J.J.; Jiang, Z.M.; Zhang, X.R.; Zhou, L. Effect of Functional Agents on the Performance of 2,4-Dinitroanisole-based Melt-Cast Explosives. (in Chinese) Acta Armamentarii 2016, 37(3): 424-430; DOI: 10.3969/j.issn.1000-1093.2016.03.006.
  • [68] Qian, W.; Chen, X.Z.; Luo, G. Polymer Reinforced DNAN/RDX Energetic Composites: Interfacial Interactions and Mechanical Properties. Cent. Eur. J. Energ. Mater. 2017, 14(3): 726-741; DOI: 10.22211/cejem/75609.
  • [69] Marina, K.; Aleksey, V.; Maxim, K.; Nikolai, K.; Gennady, S. Melt-Cast Energetic Matrices with 3-Nitro-1,2,4-triazole Derivatives for Composite Explosives. Cent. Eur. J. Energ. Mater. 2020, 17(3): 344-361; DOI: 10.22211/cejem/127516.
  • [70] Wang, H.; Wang, Q.H.; Huang, W.B.; Luo, Y.M.; Wang, H.X. Shock Sensitivity of DNTF Reduced by Using DNAN. Chin. J. Energ. Mater. 2010, 18(4): 435-438; DOI: 10.3969/j.issn.1006-9941.2010.04.018.
  • [71] Rajan, R.; Ravindran, T.R.; Venkatesan, V.; Chandra, S.; Gupta, M.K.; Mittal, R.; Srihari, V.; Rajaraman, R. Pressure Dependent Phase Transformations of Energetic Material 2,4−Dinitroanisole Using Raman Spectroscopy, X-ray Diffraction and First Principles Calculations. J. Mol. Struct. 2022, 1247: 131356-131363; DOI: 10.1016/j.molstruc.2021.131356.
  • [72] Chen, L.; Li, B.B.; Ma, X. Research on the Cook-off Characteristics of DNAN Explosive. Chin. J. Energ. Mater. 2016, 24(1): 27-32; DOI: 10.11943/j.issn.1006-9941.2016.01.004.
  • [73] Liu, R. Dynamic Pressure-measuring Thermal Analysis Technique and Applications. Doctoral dissertation, Beijing Institute of Technology, China, 2015.
  • [74] Liu, R.; Zhang, T.L.; Zhou, Z.N.; Yang, L. Volatilization Interference in Thermal Analysis and Kinetics of Low-melting Organic Nitro Compounds. RSC Adv. 2014, 4(19): 9810-9818; DOI: 10.1039/C3RA47218C.
  • [75] Zhang, C.Y.; Jin, S.H.; Ji, J.W.; Jing, B.C.; Bao, F.; Zhang, G.Y.; Shu, Q.H. Thermal Hazard Assessment of TNT and DNAN Under Adiabatic Condition by Using Accelerating Rate Calorimeter (ARC). J. Therm. Anal. Calorim. 2018, 131(1): 89-93; DOI: 10.1007/s10973-017-6665-x.
  • [76] Wojtas, J.; Szala, M. Thermally Enhanced FTIR Spectroscopy Applied to Study of Explosives Stability. Measurement 2021, 184: 110000-110007; DOI: 10.1016/j.measurement.2021.110000.
  • [77] Maharrey, S.P.; Wiese-Smith, D.; Highley, A.M.; Steill, J.D.; Behrens, R.; Kay, J.J. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity. Sandia National Laboratories, Report No SAND2015-3403, 2015.
  • [78] Maharrey, S.P.; Wiese-Smith, D.; Highley, A.M.; Behrens, R.; Kay, J.J. Interactions Between Ingredients in IMX-101: Reactive Chemical Processes Control Insensitive Munitions Properties. Sandia National Laboratories, Report No SAND2014-2012, 2014.
  • [79] Erikson, W.W. Thermal Decomposition of Energetic Materials. Sandia National Laboratories, Report No SAND2018-9376PE, 2018.
  • [80] Trzciński, W.; Cudziło, S.; Dyjak, S.; Nita, M. A Comparison of the Sensitivity and Performance Characteristics of Melt-pour Explosives with TNT and DNAN Binder. Cent. Eur. J. Energ. Mater. 2014, 11(3): 443-455.
  • [81] Oxley, J.; Smith, J.L.; Donnelly, M.A.; Colizza, K.; Rayome, S. Thermal Stability Studies Comparing IMX-101 (Dinitroanisole/Nitroguanidine/NTO) to Analogous Formulations Containing Dinitrotoluene. Propellants Explos. Pyrotech. 2016, 41(1): 98-113; DOI: 10.1002/prep.201500150.
  • [82] Wang, H.X.; Wang, H.; Cao, J.; Jiang, F.F. Application Basic Research on 2,4-Dinitroanisole. Sci. Technol. Eng. 2014, 14(25): 72-75; DOI: 1671-1815(2014)25-0072-04.
  • [83] Mishra, V.S.; Vadali, S.R.; Bhagat, A.L.; Garg, R.K.; Kugaonkar, V.M.; Raman, S.; Sinha, R.K.; Asthana, S. Studies on NTO-, FOX-7- and DNAN-based Melt Cast Formulations. Cent. Eur. J. Energ. Mater. 2017, 14(2): 403-417; DOI: 10.22211/cejem/69397.
  • [84] Zhu, D.L.; Zhou, L.; Zhang, X.R. Rheological Behavior of DNAN/HMX MeltCast Explosives. Propellants Explos. Pyrotech. 2019, 44(12): 1583-1589; DOI: 10.1002/prep.201900117.
  • [85] Li, D.W.; Jiang, Z.M.; Zhang, X.R.; Zhou, L. Characterization of New 2,4-Dinitroanisole-based Melt-Cast High Detonation Velocity Explosives. (in Chinese) Acta Armamentarii 2016, 37(4): 656-660; DOI: 10.3969/j.issn.1000-1093.2016.04.012.
  • [86] Li, D.W.; Zhou, L.; Zhang, X.R. Partial Reparametrization of the BKW Equation of State for DNAN-based Melt-Cast Explosives. Propellants Explos. Pyrotech. 2017, 42(5): 499-505; DOI: 10.1002/prep.201600206.
  • [87] Zhu, D.L.; Zhou, L.; Zhang, X.R.; Xin, R.T. Comparison of Comprehensive Properties for DNAN and TNT-based Melt-Cast Explosives. Chin. J. Energ. Mater. 2019, 27(11): 923-930; DOI: 10.11943/CJEM2019170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-889f321b-4ed6-44e1-af8d-5a3d77792fdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.