PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault tolerant control and fault diagnosis methods integrated using intelligent controller for hybrid dynamic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aims to provide a fault diagnosis approach for Hybrid Dynamic (SDHs), Systems and FaultTolerant Control synthesis, while also ensuring the smooth operation of industrial settings. This study is a part of the larger topic of Hybrid Dynamic System control and fault diagnosis. The primary focus is on modelling strategies designed expressly for Hybrid Dynamic Systems, with a concentration on combining continuous and event-driven components. Much work is devoted to developing a model that can incorporate both kinds of elements. A system model that can track several modes without explicit identification can be created by utilizing Neuro-Fuzzy Networks, providing a thorough overview. On the basis of this synthesized model, an AI-based fault diagnosis method is subsequently developed.
Czasopismo
Rocznik
Strony
art. no. 2024312
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Université Kasdi Merbah, Ouargla, Algérie
  • Laboratoire d’Automatique et Informatique de Guelma (LAIG lab.). Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algérie
  • Université Kasdi Merbah, Ouargla, Algérie
  • Université Kasdi Merbah, Ouargla, Algérie
  • Université Kasdi Merbah, Ouargla, Algérie
  • Université Kasdi Merbah, Ouargla, Algérie
  • Laboratoire d’Automatique et Informatique de Guelma (LAIG lab.). Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algérie
Bibliografia
  • 1. Schaft A, Schumacher H. An introduction to hybrid dynamical systems. Springer 2000; 251.
  • 2. Kechida S, Cocquempot V. Méthodologies de diagnostic des systèmes dynamiques: Théories et exemples. EUE, 2012.
  • 3. Goebel R, Sanfelice RG, Teel AR. Hybrid dynamical systems. IEEE control systems magazine 2009; 29(2): 28-93.
  • 4. Tomlin CJ, Sastry S. Computing piecewise affine controllers for hybrid systems. Automatica 2000; 36(3): 343-361.
  • 5. Cassandras CG, Lafortune S. Introduction to discreteevent systems. Springer Science & Business Media 1999.
  • 6. Mhamdi L, Said AM, Dhouibi H, Kechida S. Diagnosis of hybrid systems through bond graph, observers and timed automata. Diagnostyka 2020; 21(3): 113-25. https://doi.org/10.29354/diag/126444.
  • 7. Said AM, Sihem K. Methodology for monitoring and diagnosing faults of hybrid dynamic systems: a case study on a desalination plant. Diagnostyka 2020;21(1): 27-33. https://doi.org/10.29354/diag/116076.
  • 8. Sayed-Mouchaweh M. Fault diagnosis of hybrid dynamic and complex systems. Springer International Publishing 2018. https://doi.org/10.1007/978-3-319-74014-0.
  • 9. Achbi MS, Kechida S, Mhamdi L, Dhouibi H. A neural-fuzzy approach for fault diagnosis of hybrid dynamical systems: demonstration on three-tank system. Acta Mechanica et Automatica 2021; 15(1): 1-8. https://doi.org/10.2478/ama-2021-0001.
  • 10. Mhamdi L, Said AM, Dhouibi H, Kechida S. Diagnosis of hybrid systems through bond graph, observers and timed automata. Diagnostyka 2020; 21(3): 113-25. https://doi.org/10.29354/diag/126444.
  • 11. Bristol E. On a new measure of interaction for multivariableprocess control. IEEE Trans. Automat. Contr 1966; 11(1): 133-134. https://doi.org/10.1109/TAC.1966.1098266.
  • 12. Dimirovski GM, Barnett S, Kleftouris DN, Gough NE. An inputoutput package for MIMO nonlinearcontrol systems. IFAC Proceedings Volumes 1979; 12(3): 265-273. https://doi.org/10.1016/S14746670(17)658130.
  • 13. Salwa Y, Saida B, Abderrahim K. Diagnosis and fault tolerant control against actuator fault for a class of hybrid dynamic systems. Measurement and Control 2023; 56(7-8): 1240-50. https://doi.org/10.1177/00202940221143584.
  • 14. Zahaf A, Bououden S, Chadli M, Chemachema M. Robust fault tolerant optimal predictive control of hybrid actuators with time-varying delay for industrial robot arm. Asian Journal of Control 2022; 24(1): 1-15. https://doi.org/10.1002/asjc.2444.
  • 15. Rouabah B, Toubakh H, Djemai M, Ben-Brahim L, Kafi MR. New active fault tolerant control of multicellular converter. 2022 7th International Conference on Environment Friendly Energies and Applications (EFEA) 2022; 1-6. https://doi.org/10.1109/EFEA56675.2022.10063825.
  • 16. Rouabah B, Toubakh H, Djemai M, Ben-Brahim L, Ghandour R. Fault diagnosis based machine learning and fault tolerant control of multicellular converter used in photovoltaic water pumping system. IEEE Access 2023; 11: 39013-23. https://doi.org/10.1109/ACCESS.2023.3266522.
  • 17. Van Der Schaft AJ, Schumacher H. An introduction to hybrid dynamical systems. Springer 2007; 251.
  • 18. Engell S, Frehse G, Schnieder E. Modelling, analysis and design of hybrid systems. Springer 2003; 279.
  • 19. Nadjm-Tehrani, Simin, Stromberg JE. Modelling and verification of hybrid systems: A case study. 1993 4th Annual Conference on AI, Simulation and Planning in High Autonomy Systems. IEEE 1993.
  • 20. Yang H, Mao ZH, Jiang B. Model-based fault tolerant control for hybrid dynamic systems with sensor faults. Acta Automatica Sinica 2006; 32: 680-5.
  • 21. Rajaee T, Khani S, Ravansalar M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemometrics and Intelligent Laboratory Systems 2020;200: 103978. https://doi.org/10.1016/j.chemolab.2020.103978.
  • 22. Zhang C, Lu Y. Study on artificial intelligence: the state of the art and future prospects. Journal of Industrial Information Integration 2021; 23: 100224. https://doi.org/10.1016/j.jii.2021.100224.
  • 23. Neu D, Lahann J, Fettke P. A systematic literature review on state-of-the-art deep learning methods for process prediction. 2021.
  • 24. Jang JS. ANFIS adaptive-network-based fuzzy inference system. systems, man and cybernetics, IEEE Transactions on 1993; 23: 665-85. https://doi.org/10.1109/21.256541.
  • 25. Raskin JF. an introduction to hybrid automata. 2005; 491-517. https://doi.org/10.1007/0-8176-4404-0_21.
  • 26. Bak S, Beg OA, Bogomolov S, Johnson TT, Nguyen LV, Schilling C. Hybrid automata: from verification to implementation. International Journal on Software Tools for Technology Transfer 2019; 21(1): 87-104. https://doi.org/10.1007/s10009-017-0458-1.
  • 27. Alur R, Courcoubetis C, Henzinger TA, Ho PH. Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. Hybrid Systems 1993; 209-29. https://doi.org/10.1007/3-540-57318-6_30.
  • 28. Vento J, Travé-Massuyès L, Puig V, Sarrate R. An incremental hybrid system diagnoser automaton enhanced by discernibility properties. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2015; 45: 788-804. https://doi.org/10.1109/TSMC.2014.2375158.
  • 29. Achbi MS, Mhamdi L, Kechida S, Dhouibi H. Methodology to knowledge discovery for fault diagnosis of hybrid dynamical systems: demonstration on two tanks system. Diagnostyka 2020; 21(4): 115-23. https://doi.org/10.29354/diag/130617.
  • 30. Zouari T. Diagnostic des systèmes dynamiques hybrides à modes non linéaires. Doctoral dissertation, Lille 1, France 2013.
  • 31. Yang H, Jiang B, Cocquempot V. Fault tolerant control and hybrid systems. fault tolerant control Design for Hybrid Systems 2010; 1-9. https://doi.org/10.1007/978-3-642-10681-1_1.
  • 32. Jiang B, Yang H, Cocquempot V. Results and perspectives on fault tolerant control for a class of hybrid systems. International Journal of Control 2011; 84: 396-411. https://doi.org/10.1080/00207179.2011.557395.
  • 33. Amin AA, Hasan K. A Review of fault tolerant control systems: advancements and applications. Measurement 2019; 143: 58-68. https://doi.org/10.1016/j.measurement.2019.04.083.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-888dc4c1-8b41-443c-b130-1c3a68ddd4f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.