PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microorganisms associated with charophytes under different salinity conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microorganisms associated with aquatic macrophytes can in various ways interact with a plant and influence its activity and vice versa. A low-salinity intrusion into freshwater environment can affect plant-microorganism interactions. In this study, effects of different salinity conditions on the abundance and community composition of associated microorganisms with charophytes in the Curonian Lagoon were assessed. From the results, we found that short term salinity changes affected the abundance of bacteria and fungi associated with charophytes, whereas no response was reflected in the taxa composition of fungi, showing that other factors could be of more importance. The increased fungi abundances and different fungi composition in August in comparison to June was probably related to senescence process of aquatic vegetation. 8 fungi taxa were isolated and identified in association with charophytes, while higher diversity was revealed by DGGE technique.
Czasopismo
Rocznik
Strony
177--186
Opis fizyczny
Bibliogr. 60 poz., mapy, tab., wykr.
Twórcy
  • Marine Science and Technology Centre, Klaipeda University, Klaipėda, Lithuania
  • Marine Science and Technology Centre, Klaipeda University, Klaipėda, Lithuania
autor
  • Marine Science and Technology Centre, Klaipeda University, Klaipėda, Lithuania
autor
  • Marine Science and Technology Centre, Klaipeda University, Klaipėda, Lithuania
  • Marine Science and Technology Centre, Klaipeda University, Klaipėda, Lithuania
Bibliografia
  • [1] Andrews, J. H., Harris, R. F., 2000. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38 (1), 145—180, http://dx.doi.org/10.1146/annurev.phyto.38.1.145.
  • [2] Armstrong, E., Yan, L., Boyd, K. G., Wright, P. C., Burgess, J. G., 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461 (1—3), 37—40, http://dx.doi.org/10.1023/A:1012756913566.
  • [3] Bärlocher, F., Boddy, L., 2016. Aquatic fungal ecology — how does it differ from terrestrial? Fungal Ecol. 19, 5—13, http://dx.doi.org/10.1016/j.funeco.2015.09.001.
  • [4] Berg, G., Hagemann, M., 2009. Microorganisms associated with Chara hispida L. show a high antagonistic potential towards bacteria. IOBC/wprs Bull. 43. Jt. COST Action 873, 271—275.
  • [5] Blindow, I., 2000. Distribution of Charophytes along the Swedish coast in relation to salinity and eutrophication. Int. Rev. Hydrobiol. 85 (5—6), 707—717, http://dx.doi.org/10.1002/1522-2632 (200011)85:5/6<707::AID-IROH707>3.0.CO;2-w.
  • [6] Blindow, I., Dietrich, J., Möllmann, N., Schubert, H., 2003. Growth, photosynthesis and fertility of Chara aspera under different light and salinity conditions. Aquat. Bot. 76 (3), 213—234, http://dx.doi.org/10.1016/S0304-3770(03)00053-6.
  • [7] Blindow, I., Hargeby, A., Meyercordt, J., Schubert, H., 2006. Primary production in two shallow lakes with contrasting plant form dominance: a paradox of enrichment? Limnol. Oceanogr. 51 (6), 2711—2721, http://dx.doi.org/10.4319/lo.2006.51.6.2711.
  • [8] Blindow, I., Schütte, M., 2007. Elongation and mat formation of Chara aspera under different light and salinity conditions. In: Gulati, R. D., Lammens, E., Pauw, N. D., Donk, E. V. (Eds.), Shallow Lakes in a Changing World, Developments in Hydrobiology. Springer, Netherlands, 69—76.
  • [9] Bresciani, M., Giardino, C., Stroppiana, D., Pilkaitytė, R., Zilius, M., Bartoli, M., Razinkovas, A., 2012. Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon. J. Coast. Conserv. 16 (4), 511—519, http://dx.doi.org/10.1007/s11852-012-0192-5.
  • [10] Cantrell, S. A., Casillas-Martínez, L., Molina, M., 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110 (8), 962—970, http://dx.doi.org/10.1016/j.mycres.2006.06.005.
  • [11] Connolly, C. T., Sobczak, W. V., Findlay, S. E., 2014. Salinity effects on Phragmites decomposition dynamics among the Hudson River's freshwater tidal wetlands. Wetlands 34 (3), 575—582, http://dx.doi.org/10.1007/s13157-014-0526-1.
  • [12] Duarte, S., Cássio, F., Pascoal, C., 2012. Denaturing Gradient Gel Electrophoresis (DGGE) in microbial ecology–—insights from freshwaters. In: Magdeldin, S. (Ed.), Gel Electrophoresis — Principles and Basics. InTech, Croatia, 173—195, http://www.intechopen.com/books/gel-electrophoresis-principles-and-basics.
  • [13] Duarte, S., Pascoal, C., Alves, A., Correia, A., Cássio, F., 2008. Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshw. Biol. 53 (1), 91—101, http://dx.doi.org/10.1111/j.1365-2427.2007.01869.x.
  • [14] Dugdale, T. M., Hicks, B. J., De Winton, M., Taumoepeau, A., 2006. Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake. Aquat. Conserv. 16 (6), 193—202, http://dx.doi.org/10.1002/aqc.711.
  • [15] Egan, S., Fernandes, N. D., Kumar, V., Gardiner, M., Thomas, T., 2014. Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environ. Microbiol. 16 (4), 925—938, http://dx.doi.org/10.1111/1462-2920.12288.
  • [16] Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., Thomas, T., 2013. The seaweed holobiont: understanding seaweed—bacteria interactions. FEMS Microbiol. Rev. 37 (3), 462—476, http://dx.doi.org/10.1111/1574-6976.12011.
  • [17] El-Sharouny, H. M., Gherbawy, Y. A. M. H., Abdel-Aziz, F. A., 2009. Fungal diversity in brackish and saline lakes in Egypt. Nova Hedwigia 89 (3—4), 437—450, http://dx.doi.org/10.1127/0029-5035/2009/0089-0437.
  • [18] Flewelling, A. J., Currie, J., Gray, C. A., Johnson, J. A., 2015. Endophytes from marine macroalgae: promising sources of novel natural products. Curr. Sci. 109 (1), 88—111.
  • [19] Ghazala, B., Naila, B., Shameel, M., Shahzad, S., Leghari, S. M., 2004. Phycochemistry and bioactivity of two stonewort algae (Charophyta) of Sindh. Pak. J. Bot. 36 (4), 733—743.
  • [20] Godinho, V. M., Furbino, L. E., Santiago, I. F., Pellizzari, F. M., Yokoya, N. S., Pupo, D., Alves, T. M., Junior, P. A. S., Romanha, A. J., Zani, C. L., Cantrell, C. L., Rosa, C. A., Rosa, L. H., 2013. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 7 (7), 1434—1451, http://dx.doi.org/10.1038/ismej.2013.77.
  • [21] Grasshoff, K., Kremling, K., Ehrhardt, M., 2009. Methods of Seawater Analysis. John Wiley & Sons, Weinheim, 632 pp.
  • [22] Hempel, M., Blume, M., Blindow, I., Gross, E. M., 2008. Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol. 8, 58, http://dx.doi.org/10.1186/1471-2180-8-58.
  • [23] Hilt, S., 2015. Regime shifts between macrophytes and phytoplankton — concepts beyond shallow lakes, unravelling stabilizing mechanisms and practical consequences. Limnetica 34 (2), 467—480.
  • [24] Holzinger, A., Pichrtová, M., 2016. Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front. Plant Sci. 7, 1—17, http://dx.doi.org/10.3389/fpls.2016.00678.
  • [25] Hudon, C., Cattaneo, A., Gagnon, P., 2009. Epiphytic cyanobacterium Gloeotrichia pisum as an indicator of nitrogen depletion. Aquat. Microb. Ecol. 57 (2), 191—202, http://dx.doi.org/10.3354/ame01344.
  • [26] Jenkins, S. R., Moore, R. C., 1977. A proposed modification to the classical method of calculating alkalinity in natural waters. J. Am. Water Works Assoc. 69 (1), 56—60.
  • [27] Juan, M., Casas, J. J., Elorrieta, M. A., Bonachela, S., Gallego, I., Fuentes-Rodríguez, F., Fenoy, E., 2014. Can submerged macrophytes be effective for controlling waterborne phytopathogens in irrigation ponds? An experimental approach using microcosms. Hydrobiologia 732 (1), 183—196, http://dx.doi.org/10.1007/s10750-014-1875-8.
  • [28] Kientz, B., Thabard, M., Cragg, S. M., Pope, J., Hellio, C., 2011. A new method for removing microflora from macroalgal surfaces: an important step for natural product discovery. Bot. Mar. 54 (5), 457—469, http://dx.doi.org/10.1515/BOT.2011.053.
  • [29] Kis-Papo, T., Grishkan, I., Oren, A., Wasser, S. P., Nevo, E., 2001. Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol. Res. 105 (06), 749—756, http://dx.doi.org/10.1017/S0953756201004129.
  • [30] Konietschke, F., Placzek, M., Schaarschmidt, F., Hothorn, L. A., . nparcomp: an R software package for nonparametric multiple comparisons and simultaneous confidence intervals. J. Stat. Softw. 64 (9), http://dx.doi.org/10.18637/jss.v064.i09.
  • [31] Kovtun-Kante, A., Torn, K., Kotta, J., 2014. In situ production of charophyte communities under reduced light conditions in a brackish water ecosystem. Est. J. Ecol. 63 (1), 28—38, http://dx.doi.org/10.3176/eco.2014.1.03.
  • [32] Krevs, A., Koreiviene, J., Paskauskas, R., Sulijiene, R., 2007. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transit. Water Bull. 1 (1), 17—26.
  • [33] Kufel, L., Kufel, I., 2002. Chara beds acting as nutrient sinks in shallow lakes–—a review. Aquat. Bot. 72 (3—4), 249—260, http://dx.doi.org/10.1016/S0304-3770(01)00204-2.
  • [34] Kufel, L., Strzałek, M., Biardzka, E., 2016. Site- and species-specific contribution of charophytes to calcium and phosphorus cycling in lakes. Hydrobiologia 767 (1), 185—195, http://dx.doi.org/10.1007/s10750-015-2498-4.
  • [35] Loque, C. P., Medeiros, A. O., Pellizzari, F. M., Oliveira, E. C., Rosa, C. A., Rosa, L. H., 2009. Fungal community associated with marine macroalgae from Antarctica. Polar Biol. 33 (5), 641—648, http://dx.doi.org/10.1007/s00300-009-0740-0.
  • [36] Mathieson, A. C., Nienhuis, P. H., 1991. Intertidal and Littoral Ecosystems. Elsevier, New York, 564 pp.
  • [37] Mert, H. H., Ekmekçi, S., 1987. The effect of salinity and osmotic pressure of the medium on the growth, sporulation and changes in the total organic acid content of Aspergillus flavus and Penicillium chrysogenum. Mycopathologia 100 (2), 85—89, http://dx.doi.org/10.1007/BF00467099.
  • [38] Mille-Lindblom, C., Fischer, H. J., Tranvik, L., 2006. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113 (2), 233—242, http://dx.doi.org/10.1111/j.2006.0030-1299.14337.x.
  • [39] Mohamed, D. J., Martiny, J. B., 2011. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 5 (3), 379—388, http://dx.doi.org/10.1038/ismej.2010.137.
  • [40] Pajusalu, L., Martin, G., Põllumäe, A., Paalme, T., 2015. Direct effects of increased CO2 concentrations in seawater on the net primary production of charophytes in a shallow, coastal, brackishwater ecosystem. Boreal Environ. Res. 20 (3), 413—422.
  • [41] Pitkänen, H., Peuraniemi, M., Westerbom, M., Kilpi, M., Numers, M. V., 2013. Long-term changes in distribution and frequency of aquatic vascular plants and charophytes in an estuary in the Baltic Sea. Ann. Bot. Fenn. 50 (SA), 1—54.
  • [42] Porras-Alfaro, A., Bayman, P., 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Ann. Rev. Phytopathol. 49 (1), 291—315, http://dx.doi.org/10.1146/annurev-phyto-080508-081831.
  • [43] Puche, E., Rodrigo, M. A., 2015. Increased water salinity negatively affects charophytes from a spring created within the Albufera de València Natural Park. Limnetica 34 (2), 349—364.
  • [44] R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.
  • [45] Ristanović, B., Miller, C. E., 1969. Salinity tolerances and ecological aspects of some fungi collected from fresh-water, estuarine and marine habitats. Mycopathol. Mycol. Appl. 37 (3), 273—280, http://dx.doi.org/10.1007/BF02051361.
  • [46] Rodrigo, M. A., Rojo, C., Segura, M., Alonso-Guillén, J. L., Martín, M., Vera, P., 2015. The role of charophytes in a Mediterranean pond created for restoration purposes. Aquat. Bot. 120, 101—111, http://dx.doi.org/10.1016/j.aquabot.2014.05.004.
  • [47] Rodriguez, R. J., White Jr., J. F., Arnold, A. E., Redman, R. S., 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182 (2), 314—330, http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x.
  • [48] Romani, A. M., Artigas, J., Ylla, I., 2012. Extracellular enzymes in aquatic biofilms: microbial interactions versus water quality effects in the use of organic matter. In: Lear, G., Lewis, G. (Eds.), Microbial Biofilms: Current Research and Applications. Caister Acad. Press, Wymondham, 153—174.
  • [49] Schmieder, K., Werner, S., Bauer, H.-G., 2006. Submersed macrophytes as a food source for wintering waterbirds at Lake Constance. Aquat. Bot. 84 (3), 245—250, http://dx.doi.org/10.1016/j.aquabot.2005.09.006.
  • [50] Schulz, B., Boyle, C., Draeger, S., Römmert, A.-K., Krohn, K., 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106 (9), 996—1004, http://dx.doi.org/10.1017/S0953756202006342.
  • [51] Schulz, B., Draeger, S., dela Cruz, T. E., Rheinheimer, J., Siems, K., Loesgen, S., Bitzer, J., Schloerke, O., Zeeck, A., Kock, I., Hussain, H., Dai, J., Krohn, K., 2008. Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot. Mar. 51 (3), 219—234, http://dx.doi.org/10.1515/BOT.2008.029.
  • [52] Umgiesser, G., Canu, D. M., Cucco, A., Solidoro, C., 2004. A finite element model for the Venice Lagoon, Development, set up, calibration and validation. J. Mar. Syst. 51 (1—4), 123—145, http://dx.doi.org/10.1016/j.jmarsys.2004.05.009.
  • [53] Urbaniak, J., 2010. Estimation of carbonate and element content in charophytes — methods of determination. Polish J. Environ. Stud. 19 (2), 413—417.
  • [54] Voronin, L. V., 2014. Terrigenous micromycetes in freshwater ecosystems (review). Inland Water Biol. 7 (4), 352—356, http://dx.doi.org/10.1134/S1995082914040191.
  • [55] Wetzel, R. G., Søndergaard, M., 1998. Role of submerged macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (Eds.), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York, 133—148.
  • [56] White, T. J., Burns, T., Lee, S., Taylor, J. W., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfald, D. H., Sninsky, J. J., White, T. J. (Eds.), PCR Protocol: A Guide to Methods and Applications. Academic Press, New York, 315—322.
  • [57] Wurzbacher, C. M., Bärlocher, F., Grossart, H., 2010. Fungi in lake ecosystems. Aquat. Microb. Ecol. 59 (2), 125—149, http://dx.doi.org/10.3354/ame01385.
  • [58] Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S., Bellafiore, D., 2013. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci. 9 (3), 573—584, http://dx.doi.org/10.5194/os-9-573-2013.
  • [59] Zuccaro, A., Schoch, C. L., Spatafora, J. W., Kohlmeyer, J., Draeger, S., Mitchell, J. I., 2008. Detection and identification of Fungi intimately associated with the brown seaweed Fucus serratus. Appl. Environ. Microbiol. 74 (4), 931—941, http://dx.doi.org/10.1128/AEM.01158-07.
  • [60] Zuccaro, A., Schulz, B., Mitchell, J. I., 2003. Molecular detection of ascomycetes associated with Fucus serratus. Mycol. Res. 107 (12), 1451—1466, http://dx.doi.org/10.1017/S0953756203008657.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8888a343-10f5-4f3b-9eda-7746a8fd51c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.