PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kora brzozy brodawkowatej jako biomonitor zanieczyszczenia powietrza metalami ciężkimi

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Silver birch bark as a biomonitor of air pollution with heavy metals
Konferencja
ECOpole’17 Conference (4-7.10.2017 ; Polanica Zdrój, Poland)
Języki publikacji
PL
Abstrakty
PL
Celem przeprowadzonych badań była ocena możliwości wykorzystania kory brzozy brodawkowatej (Betula pendula Roth) w biomonitoringu terenów leśnych. Do badań wykorzystano korę drzew rosnących na obszarze Beskidów i Puszczy Boreckiej. W korze, metodą absorpcyjnej spektrometrii atomowej ze wzbudzeniem w płomieniu (F-AAS), oznaczono stężenia metali ciężkich: Mn, Fe, Ni, Cu, Zn, Cd oraz Pb. Na podstawie przeprowadzonych badań stwierdzono sezonowe zmiany stężenia analitów. Wykazano również, że kora brzozy brodawkowatej może być wykorzystywana jako bioindykator do oceny zanieczyszczenia aerozolu atmosferycznego na tych obszarach np. metalami ciężkimi. Ważne jest jednak, aby dokonać walidacji poszczególnych etapów procedury analitycznej z wykorzystaniem kory drzewa oraz uwzględnić czas pobierania materiału do badań.
EN
The aim of the study was to assess the possibility of using silver birch bark (Betula pendula Roth) in biomonitoring of forest areas. The research involved the use of tree bark growing in two areas - the Beskidy and the Borecka Forest. In the bark, by the method of atomic absorption spectrometry with flame excitation (F-AAS), concentrations of heavy metals: Mn, Fe, Ni, Cu, Zn, Cd and Pb were determined. On the basis of the conducted study, there were determined seasonal changes in the concentration of analytes. It was shown that the bark of a silver birch can be used as a bioindicator to assess atmospheric aerosol contamination in these areas, e.g. with heavy metals. It is important to validate the individual stages of the analytical procedure using the tree bark and take into account the time of collecting the material for testing.
Rocznik
Strony
237--246
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
autor
  • Samodzielna Katedra Biotechnologii i Biologii Molekularnej, Uniwersytet Opolski, ul. kard. B. Kominka 6, 45-032 Opole, tel. 77 401 60 42
  • Samodzielna Katedra Biotechnologii i Biologii Molekularnej, Uniwersytet Opolski, ul. kard. B. Kominka 6, 45-032 Opole, tel. 77 401 60 42
autor
  • Samodzielna Katedra Inżynierii Procesowej, Uniwersytet Opolski, ul. R. Dmowskiego 7-9, 45-365 Opole, tel. 77 401 67 00
Bibliografia
  • [1] Bąbelewska A, Musielińska R, Ciesielski W. Zanieczyszczenie metalami ciężkimi kory sosny zwyczajnej Załęczańskiego Parku Krajobrazowego - ocean zagrożenia. Prace Nauk Akademii im. Jana Długosza w Częstochowie: Techn Inf Inż Bezp. 2016;4:33-48. DOI: 10.16926/tiib.2016.04.03.
  • [2] Olszowski T, Kłos A. The impact of candle burning during all saints' day ceremonies on ambient alkyl-substituted benzene concentrations. B Environ Contam Tox. 2013;91(5):588-594. DOI: 10.1007/s00128-013-1104-6.
  • [3] Bargagli R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci Total Environ. 2016;572:216-231. DOI: 10.1016/j.scitotenv.2016.07.202.
  • [4] Mróz T, Szufa K, Frontasyeva M.V, Tselmovich V, Ostrovnaya T, Kornaś A, et al. Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy. Environ Sci Pollut Res. 2018;25:436-446. DOI: 10.1007/s11356-017-0431-2.
  • [5] Chrzan A. Necrotic bark of common pine (Pinus sylvestris L.) as a bioindicator of environmental quality. Environ Sci Pollut Res. 2015;22:1066-1071. DOI: 10.1007/s11356-014-3355-0.
  • [6] Minganti V, Drava G, Pellegrini R, Anselmo M, Modenesi P, Malaspina P, et al. The bark of holm oak (Quercus ilex, L.) for airborne Cr(VI) monitoring. Chemosphere. 2015;119:1361-1364. DOI: 10.1016/j.chemosphere.2014.02.026.
  • [7] Janta R, Chantara S. Tree bark as bioindicator of metal accumulation from road traffic and air quality map: A case study of Chiang Mai, Thailand. Atmos Pollut Res. 2017;8:956-967. DOI: 10.1016/j.apr.2017.03.010.
  • [8] Minganti V, Drava G. Tree bark as a bioindicator of the presence of scandium, yttrium and lanthanum in urban environments. Chemosphere. 2018;193:847-851. DOI: 10.1016/j.chemosphere.2017.11.074.
  • [9] Birke M, Rauch U, Hofmann F. Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J Geochem Explor. 2018;187:97-117. DOI: 10.1016/j.gexplo.2017.09.007.
  • [10] Cosma C, Iurian AR, Incze R, Kovacs T, Zora S, Zuni ZS. The use of tree bark as long term biomonitor of 137Cs deposition. J Environ Radioactiv. 2016;153:126-133. DOI: 10.1016/j.jenvrad.2015.12.019.
  • [11] Bąbelewska A. Zastosowanie biotestów kory sosnowej i plech Hypogymnia physodes do oceny oddziaływania zanieczyszczeń przemysłowych na zbiorowiska leśne. Sylwan 2014;158(4): 251-257. https://sylwan.lasy.gov.pl/apex/f?p=105:10:::NO::P10_NAZWA_PLIKU,P10_ARTYKUL,P10_ZESZYT_NEW:F1393040359%2F2014_04_251au.pdf,2012144,2014_4.
  • [12] Cucu-Man SM, Steinnes E. Analysis of selected biomonitors to evaluate the suitability for their complementary use in monitoring trace element atmospheric deposition. Environ Monit Assess. 2013;185:7775-7791. DOI: 10.1007/s10661-013-3135-1.
  • [13] Dogan Y, Unver MC, Ugulu I, Calis M, Durkan N. Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnol Biotechnol Equip. 2014;28(4):643-649. DOI: 10.1080/13102818.2014.947076.
  • [14] Pacheco AMG, Freitas MC, Barros LIC, Figueira R. Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. J Radioanal Nucl Ch. 2001;249(2):327-331. DOI: 10.1023/A:1013293814789.
  • [15] Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res. 2014;21:299-313. DOI: 10.1007/s11356-013-2046-6.
  • [16] Catinon M, Ayrault S, Spadini L, Boudouma O, Asta J, Tissut M, et al. Tree bark suber-included particles: A long-term accumulation site for elements of atmospheric origin. Atmos Environ. 2011;45:1102-1109. DOI: 10.1016/j.atmosenv.2010.11.038.
  • [17] Augustine AU, Onwuka JC, Albert CQ. Determination of heavy metal concentration in Neem (Azadirachta indica) leaves, bark and soil along some major roads in Lafia, Nasarawa State Nigeria. J Environ Chem Ecotoxicol. 2016;8(5):38-43. DOI: 10.5897/JECE2016.0371.
  • [18] Cocozza C, Ravera S, Cherubini P, Lombardi F, Marchetti M, Tognetti R. Integrated biomonitoring of airborne pollutants over space and timeusing tree rings, bark, leaves and epiphytic lichens. Urban For Urban Gree. 2016;17:177-191. DOI: 10.1016/j.ufug.2016.04.008.
  • [19] Liu W, Ni J, Zhou Q. Uptake of heavy metals by trees: prospects for phytoremediation. Mater Sci Forum. 2013;743-744:768-781. DOI: 10.4028/www.scientific.net/MSF.743-744.768.
  • [20] Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, et al. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. 2016;569-570:105-113. DOI: 10.1016/j.scitotenv.2016.06.029.
  • [21] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627:438-449. DOI: 10.1016/j.scitotenv.2018.01.211.
  • [22] Instrukcja obsługi aparatu AAS iCE 3000 firmt Thermo Scientific. Warszawa: Spectro-Lab; 2013. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.
  • [23] Lith SC, Jenen A, Frandsen FJ, Glarborg P. Release of inorganic elements during wood combustion. Prepr Pa.-Am Chem Soc Div Fuel Chem. 2004;49(1):87-88. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/49_1_Anaheim_03-04_0934.pdf.
  • [24] World Health Organization. WHO Global Urban Ambient Air Pollution Database (update 2016). http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/.
  • [25] Topolska K, Sawicka-Kapusta K, Cieślik E. The effect of contamination of the Kraków Region on heavy metals content in the organs of bank voles (Cletherionomys glareolus, Schreber, 1780). Pol J Environ Stud. 2004;13(1):103-109. https://www.pjoes.com/pdf/13.1/103-109.pdf.
  • [26] Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environl Pollut. 2011;159:3560-3570. DOI: 10.1016/j.envpol.2011.08.008.
  • [27] Chrabąszcz M, Mróz L. Tree bark, a valuable source of information on air quality. Pol J Environ Stud. 2017;26(2):453-466. DOI: 10.15244/pjoes/65908.
  • [28] Pavlović D, Pavlović M, Marković M, Karadžić B, Kostić O, Jarić S, et al. Possibilities of assessing trace metal pollution using Betula pendula Roth. leaf and bark - experience in Serbia. J Serb Chem Soc. 2017;82(6):723-737. DOI: 10.2298/JSC170113024P.
  • [29] Mertens J, Vervaeke P, Meers E, Tack FMG. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol. 2006;40(6):1962-1968. DOI: 10.1021/es051225i.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8880a192-b116-48d6-b7b0-dac190af2202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.