PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power-induced lasing state switching and bistability in a two-state quantum dot laser subject to optical injection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We theoretically investigate power-induced lasing state switching and bistability in a two-state quantum dot laser subject to optical injection. The simulated results show that, for a free-running two-state quantum dot laser operating at the ground state under low current, a power-induced lasing state switching between the ground state and the excited state can be achieved through introducing optical injection with a frequency (winj) close to the lasing frequency of excited state (wES). The injection power required for the state switching depends on the scanning route of injection power, i.e. there may exist state bistability for the injection power within a certain region. For forward scanning injection power, with the increase of frequency detuning (ΔΩ = winj – wES), the injection power required for the state switching shows a decreasing trend accompanied by slight fluctuations. However, for backward scanning injection power, the injection power required for the state switching exhibits obvious fluctuations with the increase of ΔΩ. The width of the hysteresis loop fluctuates with ΔΩ, and the fluctuation amplitude is increased with the increase of the injection current. Additionally, the influences of the inhomogeneous broadening factor and the electron escape rate on the bistability performances are analyzed.
Czasopismo
Rocznik
Strony
257--269
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, China
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • School of Physics, Chongqing University of Science and Technology, Chongqing 401331, China
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • College of Mobile Telecommunications, Chongqing University of Posts and Telecom, Chongqing 401520, China
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Bibliografia
  • [1] HILL M.T., DORREN H.J.S., DE VRIES T., LEIJTENS X.J.M., DEN BESTEN J.H., SMALBRUGGE B., OEI Y., BINSMA H., KHOE G., SMIT M.K., A fast low-power optical memory based on coupled micro-ring lasers, Nature 432, 2004, pp. 206–209, DOI:10.1038/nature03045.
  • [2] ZHUKOVSKY S.V., CHIGRIN D.N., Optical memory based on ultrafast wavelength switching in a bistable microlaser, Optics Letters 34(21), 2009, pp. 3310–3312, DOI:10.1364/OL.34.003310.
  • [3] SALVIDE M.F., MASOLLER C., TORRE M.S., All-optical stochastic logic gate based on a VCSEL with tunable optical injection, IEEE Journal of Quantum Electronics 49(10), 2013, pp. 886–893, DOI:10.1109/JQE.2013.2276122.
  • [4] TAKENAKA M., TAKEDA K., KANEMA Y., NAKANO Y., RABURN M., MIYAHARA T., All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory, Optics Express 14(22), 2006, pp. 10785–10789, DOI:10.1364/OE.14.010785.
  • [5] ZHONG D., JI Y., LUO W., Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL, Optics Express 23(23), 2015, pp. 29823–29833, DOI:10.1364/OE.23.029823.
  • [6] HUYBRECHTS K., MORTHIER G., BAETS R., Fast all-optical flip-flop based on a single distributed feedback laser diode, Optics Express 16(15), 2008, pp. 11405–11410, DOI:10.1364/OE.16.011405.
  • [7] MORI T., SATO Y. KAWAGUCHI H., Timing jitter reduction by all-optical signal regeneration using a polarization bistable VCSEL, Journal of Lightwave Technology 26(16), 2008, pp. 2946–2953.
  • [8] BRANDONISIO N., HEINRICHT P., OSBORNE S., AMANN A., O’BRIEN S., Wavelength switching performance of single- and dual-contact two-mode semiconductor lasers with current modulation, Journal of Optics 13(12) 2011, article 125501, DOI:10.1088/2040-8978/13/12/125501.
  • [9] LI S.-S., LI X.-Z., ZHUANG J.-P., MEZOSI G., SOREL M., CHAN S.-C., Square-wave oscillations in a semiconductor ring laser subject to counter-directional delayed mutual feedback, Optics Letters 41(4), 2016, pp. 812–815, DOI:10.1364/OL.41.000812.
  • [10] BLIN S., VAUDEL O., BESNARD P., GABET R., Power- or frequency-driven hysteresis for continuous-wave optically injected distributed-feedback semiconductor lasers, Optics Express 17(11), 2009, pp. 9288–9299, DOI:10.1364/OE.17.009288.
  • [11] ZHANG W.L., PAN W., LUO B., WANG M.Y., ZOU X.H., Polarization switching and hysteresis of VCSELs with time-varying optical injection, IEEE Journal of Selected Topics in Quantum Electronics 14(3), 2008, pp. 889–894, DOI:10.1109/JSTQE.2008.922896.
  • [12] HURTADO A., QUIRCE A., VALLE A., PESQUERA L., ADAMS M.J., Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection, Optics Express 17(26), 2009, pp. 23637–23642, DOI:10.1364/OE.17.023637.
  • [13] CHEN J.-J., WU Z.-M., FAN L., TANG X., LIN X.-D., DENG T., XIA G.-Q., Polarization bistability in a 1550 nm vertical-cavity surface-emitting laser subject to variable polarization optical injection, IEEE Photonics Journal 9(2), 2017, article 1502309, DOI:10.1109/JPHOT.2017.2690661.
  • [14] HONG Y., JU R., SPENCER P.S., SHORE K.A., Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback, IEEE Journal of Quantum Electronics 41(5), 2005, pp. 619–624, DOI:10.1109/JQE.2005.845352.
  • [15] TAN S., SUN M., LU D., ZHANG R., WANG W., JI C., Bistable 1060-nm high-power single-mode DFB laser diode, IEEE Photonics Journal 7(5), 2015, article 1503607, DOI:10.1109/JPHOT.2015.2483203.
  • [16] CHEN S., LI W., WU J., JIANG Q., TANG M., SHUTTS S., ELLIOTT S. N., SOBIESIERSKI A., SEEDS A.J., ROSS I., SMOWTON P.M., LIU H., Electrically pumped continuous-wave III-V quantum dot lasers on silicon, Nature Photonics 10, 2016, pp. 307–311, DOI:10.1038/nphoton.2016.21.
  • [17] LIU A.Y., ZHANG C., NORMAN J., SNYDER A., LUBYSHEV D., FASTENAU J.M., LIU A.W.K., GOSSARD A.C., BOWERS J.E., High performance continuous wave 1.3 μm quantum dot lasers on silicon, Applied Physics Letters 104(4), 2014, article 041104, DOI:10.1063/1.4863223.
  • [18] WANG Y., CHEN S., YU Y., ZHOU L., LIU L., YANG C., LIAO M., TANG M., LIU Z., WU J., LI W., ROSS I., SEEDS A.J., LIU H., YU S., Monolithic quantum-dot distributed feedback laser array on silicon, Optica 5(5), 2018, pp. 528–533, DOI:10.1364/OPTICA.5.000528.
  • [19] JUNG D., ZHANG Z., NORMAN J., HERRICK R., KENNEDY M.J., PATEL P., TURNLUND K., JAN C., WAN Y., GOSSARD A.C., BOWERS J.E., Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency, ACS Photonics 5(3), 2018, pp. 1094–1100, DOI:10.1021/acsphotonics.7b01387.
  • [20] GHALIB B.A., AL-OBAIDI S.J., AL-KHURSAN A.H., Modeling of synchronization in quantum dot semi-conductor lasers, Optics and Laser Technology 48, 2013, pp. 453–460, DOI:10.1016/j.optlastec.2012.11.021.
  • [21] LIU H., WANG T., JIANG Q., HOGG R., TUTU F., POZZI F., SEEDS A., Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate, Nature Photonics 5, 2011, pp. 416–419, DOI:10.1038/nphoton.2011.120.
  • [22] LI Q., WANG X., ZHANG Z., CHEN H., HUANG Y., HOU C., WANG J., ZHANG R., NING J., MIN J., ZHENGC., Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes, ACS Photonics 5(3), 2018, pp. 1084–1093, DOI:10.1021/acsphotonics.7b01355.
  • [23] LIU H.Y., CHILDS D.T., BADCOCK T.J., GROOM K.M., SELLERS I.R., HOPKINSON M., HOGG R.A., ROBBINS D.J., MOWBRAY D.J., SKOLNICK M.S., High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents, IEEE Photonics Technology Letters 17(6), 2005, pp. 1139–1141, DOI:10.1109/LPT.2005.846948.
  • [24] SICHKOVSKYI V.I., WANICZEK M., REITHMAIER J.P., High-gain wavelength-stabilized 1.55 μm InAs/InP(100) based lasers with reduced number of quantum dot active layers, Applied Physics Letters 102(22), 2013, article 221117, DOI:10.1063/1.4809730.
  • [25] GAO F., LUO S., JI H.-M., YANG X.-G., YANG T., Enhanced performance of tunable external-cavity 1.5 μm InAs/InP quantum dot lasers using facet coating, Applied Optics 54(3), 2015, pp. 472–476, DOI:10.1364/AO.54.000472.
  • [26] CAPUA A., ROZENFELD L., MIKHELASHVILI V., EISENSTEIN G., KUNTZ M., LAEMMLIN M., BIMBERG D., Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser, Optics Express 15(9), 2007, pp. 5388–5393, DOI:10.1364/OE.15.005388.
  • [27] SHCHEKIN O.B., DEPPE D.G., 1.3 μm InAs quantum dot laser with T0 = 161 K from 0 to 80 °C, Applied Physics Letters 80(18), 2002, pp. 3277–3279, DOI:10.1063/1.1476708.
  • [28] SELLIN R.L., RIBBAT C., GRUNDMANN M., LEDENTSOV N.N., BIMBERG D., Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers, Applied Physics Letters 78(9), 2001, pp. 1207–1209, DOI:10.1063/1.1350596.
  • [29] LIU A.Y., KOMLJENOVIC T., DAVENPORT M.L., GOSSARD A.C., BOWERS J.E., Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon, Optics Express 25(9), 2017, pp. 9535–9543, DOI:10.1364/OE.25.009535.
  • [30] ABUSAA M., DANCKAERT J., VIKTOROV E.A., ERNEUX T., Intradot time scales strongly affect the relaxation dynamics in quantum dot lasers, Physical Review A 87(6), 2013, article 063827, DOI:10.1103/PhysRevA.87.063827.
  • [31] VIKTOROV E.A., DUBINKIN I., FEDOROV N., ERNEUX T., TYKALEWICZ B., HEGARTY S.P., HUYET G., GOULDING D., KELLEHER B., Injection-induced, tunable, all-optical gating in a two-state quantum dot laser, Optics Letters 41(15), 2016, pp. 3555–3558, DOI:10.1364/OL.41.003555.
  • [32] MEINECKE S., LINGNAU B., RÖHM A., LÜDGE K., Stability of optically injected two-state quantum-dot lasers, Annalen der Physik (Berlin) 529(12), 2017, p. 1600279, DOI:10.1002/andp.201600279.
  • [33] VIRTE M., BREUER S., SCIAMANNA M., PANAJOTOV K., Switching between ground and excited states by optical feedback in a quantum dot laser diode, Applied Physics Letters 105(12), 2014, article 121109, DOI:10.1063/1.4896576.
  • [34] VIRTE M., PANAJOTOV K., SCIAMANNA M., Mode competition induced by optical feedback in two-color quantum dot lasers, IEEE Journal of Quantum Electronics 49(7), 2013, pp. 578–585, DOI:10.1109/JQE.2013.2260725.
  • [35] TYKALEWICZ B., GOULDING D., HEGARTY S. P., HUYET G., BYRNE D., PHELAN R., KELLEHER B., All-optical switching with a dual-state, single-section quantum dot laser via optical injection, Optics Letters 39(15), 2014, pp. 4607–4609, DOI:10.1364/OL.39.004607.
  • [36] TYKALEWICZ B., GOULDING D., HEGARTY S.P., HUYET G., DUBINKIN I., FEDOROV N., ERNEUX T., VIKTOROV E.A., KELLEHER B., Optically induced hysteresis in a two-state quantum dot laser, Optics Letters 41(5), 2016, pp. 1034–1037, DOI:10.1364/OL.41.001034.
  • [37] VIKTOROV E.A., MANDEL P., Electron-hole asymmetry and two-state lasing in quantum dot lasers, Applied Physics Letters 87(5), 2005, article 053113, DOI:10.1063/1.1995947.
  • [38] WANG C., ZHUANG J.-P., GRILLOT F., CHAN S.-C., Contribution of off-resonant states to the phase noise of quantum dot lasers, Optics Express 24(26), 2016, pp. 29872–29880, DOI:10.1364/OE.24.029872.
  • [39] VIKTOROV E. A., MANDEL P., O’DRISCOLL I., CARROLL O., HUYET G., HOULIHAN J., TANGUY Y., Low-frequency fluctuations in two-state quantum dot lasers, Optics Letters 31(15), 2006, pp. 2302–2304, DOI:10.1364/OL.31.002302.
  • [40] GIOANNINI M., MONTROSSET I., Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers, IEEE Journal of Quantum Electronics 43(10), 2007, pp. 941–949, DOI:10.1109/JQE.2007.904306.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8877e9d3-a235-4d32-9010-148b75a69194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.