PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short-beam shear fatigue life assessment of thermally cycled carbon-aluminium laminates with protective glass interlayers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibre metal laminates (FMLs) are attractive construction materials, especially for use in aerospace and transport facilities. Throughout their service life, thin-walled structures made of FMLs are exposed to static and dynamic loads, as well as corrosion and the unfavourable influence of environmental conditions. The paper presents an experimental analysis of the combined mechanical and environmental long-term behaviour of carbon-based fibre metal laminates and their variants with protective glass layers. The Al alloy/CFRP and Al alloy/GFRP/CFRP laminates in a 3/2 configuration were used. The tested laminates were subjected to 1500 thermal cycles with a temperature range of 130°C. The static and fatigue interlaminar shear strengths were tested before and after thermal conditioning. It was shown that the stable stiffness reduction in the tested laminates was observed with increasing fatigue cycles, due to the progressive fatigue damage accumulation. The thermally cycled laminates feature slightly smoother stiffness loss, while a more rapid decrease was observed in thermally untreated laminates. Moreover, the fatigue life of the tested laminates subjected to thermal cycling revealed nine times fewer fatigue cycles of laminates with glass protectors after thermal cycles in comparison to the laminates not subjected to thermal cycling.
Słowa kluczowe
Rocznik
Strony
169--179
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • [1] Sinmazçelik T, Avcu E, Bora MO, Çoban O. A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des. 2011;32:3671–85.
  • [2] Kotik HG, Perez-Ipiña JE. Short-beam shear fatigue behavior of fiber metal laminate (Glare). Int J Fatigue. 2017;95:236–42.
  • [3] Liu C, Du D, Li H, Hu Y, Xu Y, Tian J, Tao G, Tao J. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Compos Part B. 2016;97:361–7.
  • [4] Bellini C, Di Cocco V, Iacoviello F, Sorrentino L. Influence of structural characteristics on the interlaminar shear strength of CFRP/Al fibre metal laminates. Procedia Struct Integr. 2019;18:373–8.
  • [5] Bellini C, Di Cocco V, Iacoviello F, Sorrentino L. Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics. Compos Struct. 2019;225:111–7.
  • [6] Bienias J, Dadej K. Fatigue delamination growth of carbon and glass reinforced fiber metal laminates in fracture mode II. Int J Fatigue. 2020;130:105267.
  • [7] Bellini C, Di Cocco V, Iacoviello F, Sorrentino L. Analysis of CFRP/Al hybrid laminates flexural strength. Procedia Struct Integr. 2019;18:368–72.
  • [8] Dadej K, Bienias J. On fatigue stress-cycle curves of carbon, glass and hybrid carbon/glass-reinforced fibre metal laminates. Int J Fatigue. 2020;140:105843.
  • [9] Liu Z, Curioni M, Jamshidi P, Walker A, Prengnell P, Thompson GE, Skeldon P. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys. Appl Surf Sci. 2014;314:233–40.
  • [10] Peng Z, Nie X. Galvanic corrosion property of contacts between carbon fiber cloth materials and typical metal alloys in an aggressive environment. Surf Coat Technol. 2013;215:85–9.
  • [11] Rajkumar GR, Krishn M, Narasimhamurthy HN, Keshavamurthy YC, Nataraj JR. Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates. Procedia Mater Sci. 2014;5:60–8.
  • [12] Surowska B, Ostapiuk M, Jakubczak P, Drozdziel M. The durability of an organic-inorganic sol–gel interlayer in Al-GFRP-CFRP laminates in a saline environment. Materials. 2019;12(15):2362.
  • [13] Stoll MM, Weidenmann KA. Fatigue of fiber-metal-laminates with aluminum core, CFRP face sheets and elastomer interlayers (FMEL). Int J Fatigue. 2018;107:110–8.
  • [14] Adamos L, Tsokanas P, Loutas T. An experimental study of the interfacial fracture behavior of Titanium/CFRP adhesive joints under mode I and mode II fatigue. Int J Fatigue. 2020;136:105586.
  • [15] Müller B, Hagenbeek M, Sinke J. Thermal cycling of (heated) fibre metal laminates. Compos Struct. 2016;152:106–16.
  • [16] Park SY, Choi WJ, Choi HS. The effects of void contents on the long-term hygrothermal behaviors of glass/epoxy and GLARE laminates. Comp Struct. 2010;92:18–24.
  • [17] Khosravani MR, Wienberg K. Experimental investigations of the environmental effects on stability and integrity of composite sandwich T-joints. Materialwissenschaft Werkstofftechnik. 2017;48:753–9.
  • [18] García-Moreno I, Caminero MA, Rodríguez GP, López-Cela JJ. Effect of thermal ageing on the impact damage resistance and tolerance of carbon-fibre-reinforced epoxy laminates. Polymers. 2019;11:160.
  • [19] Jakubczak P, Bienias J, Surowska B. Interlaminar shear strength of fibre metal laminates after thermal cycles. Compos Struct. 2018;206:876–87.
  • [20] da Costa AA, da Silva DFNR, Travessa DN, Botelho EC. The effect of thermal cycles on the mechanical properties of fiber–metal laminates. Mater Des. 2012;42:434–40.
  • [21] Alam P, Mamalis D, Robert C, Floreani C, Brádaigh CMO. The fatigue of carbon fibre-reinforced plastics—a review. Compos Part B. 2019;166:555–79.
  • [22] Zhou S, Li Y, Fu K, Wu X. Progressive fatigue damage modelling of fibre-reinforced composite based on fatigue master curves. Thin-Walled Struct. 2021;158:107173.
  • [23] D’Amore A, Grassia L. A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings. Comp Struct. 2019;228:111338.
  • [24] Alderliesten RC. Designing for damage tolerance in aerospace: a hybrid material technology. Mater Des. 2015;66:421–8.
  • [25] Homan JJ. Fatigue initiation in fibre metal laminates. Int J Fatigue. 2006;28:366–74.
  • [26] Wang W, Rans C, Benedictus R. Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates. Int J Fatigue. 2017;103:546–56.
  • [27] Wang W, Rans C, Zhang Z, Benedictus R. Prediction methodology for fatigue crack growth behaviour in Fibre Metal Laminates subjected to tension and pin loading. Compos Struct. 2017;182:176–82.
  • [28] Meng W, Li Y, Zhang X, Zhang Y, Wang Y, Huang X. Analysis and prediction on total fatigue life problems of fiber reinforced metal laminates under two-stage loading. Compos Struct. 2020;237:111960.
  • [29] Rans CD, Alderliesten RC, Benedictus R. Predicting the influence of temperature on fatigue crack propagation in Fibre Metal Laminates. Eng Fract Mech. 2011;78:2193–201.
  • [30] EN ISO14130:1997. Fibre-reinforced plastic composites-determination of apparent interlaminar shear strength by short-beam method. Switzerland: InternationalOrganization for Standardization; 1997.
  • [31] Hagenbeek M, Sinke J. Effect of long-term thermal cycling and moisture on heated Fibre Metal Laminates and glass-fibre epoxy composites. Compos Struct. 2019;210:500–8.
  • [32] Li H, Hu Y, Liu C, Zheng X, Liu H, Tao J. The effect of thermal fatigue on the mechanical properties of the novel fiber metal laminates based on aluminum–lithium alloy. Compos Part A. 2016;84:36–42.
  • [33] Zhong Y, Joshi SC. Response of hygrothermally aged GLARE 4A laminates under static and cyclic loadings. Mater Des. 2015;87:138–48.
  • [34] Teixeira de Freitas S, Sinke J. Failure analysis of adhesively-bonded metal-skin-to-composite-stiffener: effect of temperature and cyclic loading. Compos Struct. 2017;166:27–37.
  • [35] Botelho EC, Pardini LC, Rezende MC. Evaluation of hygrothermal effects on the shear properties of Carall composites. Mat Sci Eng A. 2007;452–453:292–301.
  • [36] Ali A, Duan L, Zheng Z, Sapkota B. Characterization of seawater hydrothermal conditioning effects on the properties of titanium-based fibre-metal laminates for marine applications. Compos Struct. 2016;158:199–207.
  • [37] Choi HS, Ahn KJ, Nam J-D, Chun HJ. Hygroscopic aspects of epoxy/carbon fibre composite laminates in aircraft environments. Compos Part A. 2001;32:709–20.
  • [38] Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat. 2009;64:327–38.
  • [39] Ebnesajjad S. Surface treatment of materials for adhesive bonding, 2nd edn. Amsterdam: William Andrew Elsevier; 2014. Chapter 7, pp. 139–83.
  • [40] Bieniaś J, Jakubczak P, Droździel M, Surowska B. Interlaminar shear strength and failure analysis of aluminium-carbon laminates with a glass fiber interlayer after moisture absorption. Materials. 2020;13:2999.
  • [41] Cui H, Koussios S, Li Y, Beukers A. Measurement of adhesive shear properties by short beam shear test based on higher order beam theory. Int J Adhes Adhes. 2013;40:19–30.
  • [42] Hader-Kregl L, Wallner GM, Kralovec C, Eyßell C. Effect of inter-plies on the short beam shear delamination of steel/composite hybrid laminates. J Adhes. 2019;95(12):1088–100.
  • [43] Calabrese C, Laird C. Cyclic stress-strain response of two-phase alloys part I. Microstructures containing particles penetrable by dislocations. Mater Sci Eng. 1974;13(2):141–57.
  • [44] Kubit A, Trzepiecinski T, Kłonica M, Hebda M, Pytel M. The inf luence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test. Compos Part B. 2019;176:107217.
  • [45] Dadej K, Surowska B, Bieniaś J. Isostrain elastoplastic model for prediction of static strength and fatigue life of fiber metal laminates. Int J Fatigue. 2018;110:31–41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88721620-95eb-4d69-b058-c584f55bb9b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.