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Abstract:
Further results of research into parsable graph gram-
mars used for syntacƟc paƩern recogniƟon (Pattern Re-
cognition: 21, 623-629 (1988); 23, 765-774 (1990); 24,
12-23 (1991); 26, 1-16 (1993); 43, 2249-2264 (2010),
Comput. Vision Graph. Image Process. 47, 1-21 (1989),
Computer-Aided Design 27, 403-433 (1995), Theoret.
Comp. Sci. 201, 189-231 (1998), Pattern Analysis Appli-
cations bf 17, 465-480 (2014)) are presented in the pa-
per. The generaƟve power of reducƟon-based parsable
ETPR(k) graph grammars is invesƟgated. The analogy
between the triad of CF - LL(k) - LR(k) string languages
and the triad of NLC - ETPL(k) - ETPR(k) graph langua-
ges is discussed.

Keywords: syntacƟc paƩern recogniƟon, graph gram-
mar, parsing

1. IntroducƟon
Graph grammars are the strongest descrip-

tive/generative formalism in the theory of formal
languages and automata, if compared with string or
tree grammars. They are used for the synthesis of
formal representations in various important areas
of computer science such as: software engineering,
(syntactic) pattern recognition, database design, pro-
gramming languages and compiler design, computer
networks, distributed and concurrent computing,
logic programming, computer vision, IT systems for
chemistry and biology, artiϐicial intelligence (natural
language processing, knowledge representation and
rule-based systems) [10, 11, 45]. However, the use of
graph automata/parsers as tools for the analysis of
graph representations in these application areas is
strongly limited because the membership problem
for graph languages is PSPACE- or NP- complete.
Research into this problem has been undertaken
for 50 years. The ϐirst graph automata were deϐined
in the 1960s by Blum and Hewitt [3]. For Pfaltz-
Rosenfeld web grammars generating node-labelled
graphs with embedding transformations that specify
inheriting edges by pointing out proper nodes of
right-hand side graphs [40], the web automata were
deϐined by Rosenfeld and Milgram [43] in 1972 and
in 1977 the web parser by Brayer [6]. In 1978 Franck
constructed the precedence relations-based syntax
analyzer, O(n2), n is the number of nodes, [28] for
NLC-like grammars [30, 32]1 with restricted embed-
ding transformations. (Later, the complexity is stated
with respect to the number of nodes n.) In the same

year Della Vigna and Ghezzi [8] proposed the parser,
O(n2), for grammars based on the Pratt model, in
which the embedding transformation is deϐined by
determining input (output) nodes of right-hand side
graphs which inherit the edges of left-hand sides [41].
The precedence relations-based parser, O(n2), was
constructed by Kaul [33] for NLC-like grammars. In
the early 1980s, subclasses of graph grammars with
polynomial membership problem were studied by
Brandenburg [4], Slisenko [49], and Turan [51]. Sub-
sequently, the parsing algorithm,O(n2), for expansive
graph grammars was formulated by Fu and Shi in
1983 [48]. In 1986 the polynomial parsing algorithm
for boundary NLC languages was deϐined by Rozen-
berg and Welzl [46]. During the ϐirst half of 1990s
three parsing algorithms,O(n2), based on the analogy
to LL(k) grammars [36, 44] were deϐined: for the re-
gular ETL(1) subclass of edNLC languages [13,14], the
error-correcting parser [15], and for the context-free
ETPL(k) subclass of edNLC languages [16]. The ϐirst
(polynomial) parser for Habel-Kreowski/Bauderon-
Courcelle hyperedge replacement grammars, HR
grammars, [1, 29] was constructed by Lautemann
in 1988 [35]. The succeeding parsers for this class
of graph grammars were proposed by Vogler in
1991 (the Cocke-Kasami-Younger-based parser),
O(n3), [52], by Seifert and Fischer in 2004 (the
Earley-based parser), O(n3), [47], by Mazanek and
Minas in 2008 (a method based on polynomial graph
parser combinators) [37], and in 2015 by Drewes,
Hoffmann and Minas for the predictively top-down
parsable subclass of HR grammars, O(n2), [9]. Two
polynomial syntax analyzers for Feder plex grammars,
which generate graph-like structures (called plexes)
consisting of nodes with pre-deϐined attaching points
(called napes), [12] were constructed independently
by Bunke and Haller [7] and by Peng, Yamamoto and
Aoki [39] in 1990. For relational grammars; in which
the right-hand sides are structures deϐined with
relations between labelled objects and embedding
is performed in an analogous way - as with plex
attaching points; parsing algorithms were proposed
by Wittenburg, Weitzman and Talley in 1991 (ex-
ponential) [54] and in 1994 by Tucci, Vitiello and
Costagliola (polynomial) [50]. In 1996 Wills publis-
hed a paper on exponential Earley-based parsing for
attributed ϐlow graph grammars [53], which can be
treated as plex grammars with attributes generating
directed acyclic graphs. The exponential parser for
layered graph grammars was constructed by Rekers
and Schürr in 1997 [42]. Layered graph grammars
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are context-sensitive grammars with decomposing
node and edge alphabets into more than two layers
(i.e. terminal and nonterminal layers) and imposing
a kind of lexicographical order on graphs based on
layers. The polynomial syntax analyzer for reserved
graph grammars, which are layered grammars with
reversed productions (to make parsing efϐicient),
was deϐined by Zhang, Zhang and Cao in 2001 [55].
The automata for Janssens-Rozenberg NCE graph
languages [31] were deϐined by Brandenburg and
Skodinis in 2005 [5].

Graph grammars can be divided into two large fa-
milies according to the embedding mechanism: gram-
mars with connecting embedding (the set theoretic
approach, the algorithmic approach) and grammars
with gluing embedding (the algebraic approach) [45].
Within each of these families two standard classes
of graph grammars, which are interesting for deϐi-
ning practical parsing algorithms, are distinguished
[45]. The grammars with connecting embedding are
VR (vertex replacement) grammars, mainly NCE-like
(Neighbourhood Controlled Embedding) grammars
[31] and NLC-like (Node Label Controlled) grammars
[30,32]. The grammars with gluing embedding areHR
(hyperedge replacement) grammars [1, 29]. Research
into deϐining the subclasses with polynomial mem-
bership problem of NLC-like grammars and their ap-
plications has been carried out for the last 30 years.

The previously mentioned parsable ETPL(k)
subclass of edNLC graph grammars has been success-
fully used for practical applications (see below).
Moreover, the inference algorithm for ETPL(k) graph
languages has been deϐined [20] and its descriptive
power was characterized [19]. Nevertheless, in some
cases its power limitations have been revealed. These
limitations result from constraints imposed on the
deϐinition of ETPL(k) grammar in order to make it
parsable in a top-down manner. ETPL(k) grammars
have been deϐined analogously to top-down parsable
(string) LL(k) grammars [36, 44]. It is also known
that Knuth’s reduction-based (bottom-up) parsable
(string) LR(k) grammars [34] have a greater gene-
rative power than LL(k) grammars. Therefore, the
reduction-based parsable ETPR(k) subclass of edNLC
graph grammars has been deϐined [23, 24]. Both
classes, i.e. ETPL(k) and ETPR(k) have been applied
successfully for scene analysis in robotics [13], soft-
ware allocation in distributed systems [25], CAD/CAM
integration [18, 22], reasoning in real-time expert
systems [2, 17], mesh reϐinement (ϐinite element
method, FEM) in CAE systems [27], sign language
recognition [21,26], and computer vision [24]. Howe-
ver, to date the formal properties of ETPR(k) graph
grammars have not been presented.

The generative power of ETPR(k) graph grammars
with polynomial membership problem is presented
and the analogies between parsable subfamilies of CF
string and edNLC graph languages are discussed in
this paper. The deϐinitions pertaining to edNLC graph
grammars are given in Section 2. Notions of indexed
and reversely indexed edge-unambiguous graphs that

enable linear ordering on EDG graphs [32] to be in-
troduced are presented in Section 3. The deϐiniti-
ons concerning edNLC graph languages with polyno-
mial membership problem are included in Section 4.
The generative power of the reduction-based parsable
ETPR(k) subclass of edNLC graph languages is investi-
gated in Section 5. The discussion on the analogy be-
tween the triad of CF - LL(k) - LR(k) string languages
and the triad of NLC - ETPL(k) - ETPR(k) graph lan-
guages is presented in Section 6 and the ϐinal section
consists of concluding remarks.

2. Preliminaries
In this section the basic deϐinitions of EDG graph,

edNLC graph grammar and edNLC graph language are
introduced [30,32].

Deϐinition1.Adirected node- and edge-labelled graph,
EDG graph, over Σ and Γ is a quintuple

H = (V,E,Σ,Γ, ϕ),

where V is a ϔinite, non-empty set of nodes,
Σ is a ϔinite, non-empty set of node labels,
Γ is a ϔinite, non-empty set of edge labels,
E is a set of edges of the form (v, λ, w), in which
v, w ∈ V, λ ∈ Γ, and
ϕ : V −→ Σ is a node-labelling function.

The family of the EDG graphs overΣ and Γ is deno-
ted byEDGΣ,Γ. The components V,E, ϕ of a graphH
are sometimes denoted with VH , EH , ϕH .

LetA = (VA, EA,Σ,Γ, ϕA),B = (VB , EB ,Σ,Γ,,
ϕB) and C = (VC , EC ,Σ, Γ, ϕC) be EDG graphs. An
isomorphism from A onto B is a bijective function h
from VA onto VB such that

ϕB◦h = ϕA and EB = {(h(v), λ, h(w)) : (v, λ, w) ∈ EA}.

We say that A is isomorphic to B, and denote it with
A ∼= B.
A graph C is a (full) subgraph ofB iff VC ⊆ VB , EC =
{(v, λ, w) ∈ EB : v, w ∈ VC} and ϕC is the restriction
to VC of ϕB .

Deϐinition 2. An edge-labelled directed Node Label
Controlled, edNLC, graph grammar is a quintuple

G = (Σ,∆,Γ, P, Z),

where Σ is a ϔinite, non-empty set of node labels,
∆ ⊆ Σ is a set of terminal node labels,
Γ is a ϔinite, non-empty set of edge labels,
P is a ϔinite set of productions of the form (l,D,C), in
which l ∈ Σ\∆, D ∈ EDGΣ,Γ, C : Γ × {in, out} −→
2Σ×Σ×Γ×{in,out} is the embedding transformation,
Z ∈ EDGΣ,Γ is the starting graph called the axiom.

Deϐinition 3. Let G = (Σ,∆,Γ, P, Z) be an edNLC
graph grammar.
(1) LetH,H ∈ EDGΣ,Γ. ThenH directly derivesH in
G, denoted byH =⇒

G
H , if there exists a node v ∈ VH
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Fig. 1. An example of a derivaƟon step in an edNLC graph grammar.

and a production (l,D,C) inP such that the following
holds.

(a) l = ϕH(v).
(b) There exists an isomorphism fromH onto the

graphX in EDGΣ,Γ constructed as follows. LetD be
a graph isomorphic to D such that VH ∩ VD = ∅ and
let h be an isomorphism fromD ontoD. Then

X = (VX , EX ,Σ,Γ, ϕX),

where
VX = (VH \ {v}) ∪ VD ,

ϕX(y) =

{
ϕH(y) if y ∈ VH \ {v}
ϕD(y) if y ∈ VD ,

EX = (EH \ {(n, γ,m) : n = v orm = v}) ∪ ED
∪{(n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an

edge (m,λ, v) ∈ EH such that
(ϕX(n), ϕX(m), γ, out) ∈ C(λ, in)}∪

∪{(m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an
edge (m,λ, v) ∈ EH such that

(ϕX(n), ϕX(m), γ, in) ∈ C(λ, in)}∪
∪{(n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an

edge (v, λ,m) ∈ EH such that
(ϕX(n), ϕX(m), γ, out) ∈ C(λ, out)}∪

∪{(m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an
edge (v, λ,m) ∈ EH such that

(ϕX(n), ϕX(m), γ, in) ∈ C(λ, out)}.

(2) By *=⇒
G

wedenote the transitive and reϐlexive clo-
sure of =⇒

G
.

(3) The language ofG, denoted L(G), is the set

L(G) = {H : Z *=⇒
G

H and H ∈ EDG∆,Γ}.

An example of a derivation step of an edNLC gram-
mar is shown in Fig. 1.

The graph h which will be transformed is shown
in Fig. 1a., whereas the left-hand side l = A and the

right-hand sideD of a production are shown in Fig. 1b.
Let us assume that the embedding transformation is
deϐined as follows:

(i) C(y, in) = {(b, a, p, out)},

(ii) C(u, out) = {(b, A, x, out), (c, A, z, in)},

(iii) C(u, in) = ∅.

The derivation step is performed in two parts.
During the ϐirst stage the node labelled with B of
the graph h (corresponding to the left-hand side of
the production) is removed, and the graph of the
right-hand side replaces the removed node. The trans-
formed graph obtained by removing the node (cf.
VH \ {v} in Deϐinition 3) and its adjacent edges (cf.
EH \ {(n, γ,m) : n = v or m = v} in Deϐinition 3)
is called the rest graph. During the second stage, the
embedding transformation is used in order to connect
certain nodes of the right-hand side graph with the
rest graph. The item (i) is interpreted as follows:
1) Each edge labelled with y and coming in the node

corresponding to the left-hand side of the pro-
duction, i.e.B, shall be replaced by

2) the edge:
a) connecting the node of the graph of the right-

hand side of the production and labelled with
b with the node of the rest graph and labelled
with a,

b) labelled with p,
c) and going out from the node b.

Thus the item (i) of the embedding transformation ge-
nerates the edge of the graphh, shown in Fig. 1c,which
is labelled with p and connects the nodes labelled b
and a on the basis of the edge of the graph h label-
led y and connecting the nodes labelled B and a (re-
direction and relabelling). The item (ii) duplicates an
edge, and the item (iii) deletes an edge.
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Fig. 2. An example of an IE graph (a) and an rIE graph (b).

In this paper edNLC productions are depicted ac-
cording to the diagrammatical convention used in [45]
(see Fig. 1d for the example production). The left-hand
side is depicted with a box carrying its label in the up-
per left corner. The box contains the right-hand side
graph. The area outside the box represents the envi-
ronment of the right-hand side graph. The labelled ar-
rows pointing to/from the box to the outside specify
the domain of the embedding transformation. The la-
belled arrows which continue an outside arrow inside
the box specify the embedding of this (outside) edge.
Thus, the outside arrow can be re-established (with
possible redirection/relabelling), duplicated (if conti-
nued by more than one arrow) or deleted (if not con-
tinued).

3. edNLC Graph Languages with Polynomial
Membership Problem
As discussed in [19], there are two main reasons

for the problems with constructing efϐicient parsing
algorithms for graph languages (compared to the al-
gorithms for string and tree languages) the lack of or-
dering of the graph structure and the complexity of the
embedding transformation. Firstly, consider the orde-
ring problem.

Note that the main concept of a reduction-
based syntax analysis consists of analyzing the
sentence/structure in order to identify consecutive
subphrases/sub-structures (handles) that correspond
to right-hand sides of the productions. Once a handle
is identiϐied, it is consumed, i.e. it is reduced to the
left-hand side of the appropriate production. (In a
top-down parse, handles have to be identiϐied as well
in order to ϐind the appropriate production to be ap-
plied.) In the case of a graph structure, this means to
look for a subgraph (a handle) that is isomorphic to a
given graph, i.e. resolving the subgraph isomorphism
problem, which is known to be NP-complete.

To resolve this problem we have introduced
two subclasses of EDG graphs called indexed edge-
unambiguous graphs, IE graphs [13, 15] and reverse
indexed edge-unambiguous graphs, rIE graphs [23] in
which a linear order on a set of nodes is deϐined. A
transformation of an EDG graph into an (r)IE graph

can be performed, if the former is an interpreted graph
[23], i.e. it represents some real-world structure2.

Now, let us introduce the way of indexing
graph nodes, which has been used for deϐining
the top-down parsable ETPL(k) graph gram-
mars [19]. Let G = (V,E,Σ,Γ, ϕ) be an EDG
graph, V = {v1, v2, . . . , vn}. We deϐine a set of indices
Ind= {1, 2, . . . , n} for V .G is called an indexed graph
if indices of Ind have been ascribed to nodes of V with
a bijective function.

Deϐinition 4. LetH be an EDG graph overΣ and Γ. An
indexed edge-unambiguous graph, IE graph, overΣ and
Γ deϐined on the basis of the graphH is an EDG graph
G = (V,E,Σ,Γ, ϕ)which is isomorphic toH up to the
direction of the edges3, such that the following condi-
tions are fulϐilled.
1.G contains a directed spanning tree T such that no-
des ofT have been indexeddue to the Level Order Tree
Traversal (LOTT)4.
2. Nodes ofG are indexed in the same way as nodes of
T .
3. Every edge in G is directed from the node having a
smaller index to the node having a greater index.

The family of all the IE graphs over Σ and Γ is
denoted by IEΣ,Γ.

An example of an IE graph h1 is shown in Fig. 2a.
The indices are ascribed to the graph nodes according
to LOTT. The edges of the spanning tree T are thicke-
ned.

The way of indexing nodes according to LOTT
is convenient if one uses a top-down parsing
scheme [19]. In this paper reduction-based (bottom-
up) parsable ETPR(k) graph grammars are characteri-
zed. The graphs generated by these grammars should
be indexed according to a scheme that allows one
to apply a reduction-based parsing scheme, i.e. the
parser produces the rightmost derivation in reverse.
(As it is made for Knuth’s (string) LR(k) parsers [34].)
Thus, we have to deϐine a new traversal scheme for
the tree spanned on an EDG graph. Such a scheme has
been introduced in [23]. It is analogous to the LOTT
(BFS) scheme, however it uses a LIFO queue (i.e. a
stack) instead of a FIFO queue. We call it the Reverse
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Fig. 3. An example of an ETPL(k)-ETPR(k) graph grammar

Level Order Tree Traversal (RLOTT). Now reversely
indexed edge-unambiguous graphs can be deϐined.

Deϐinition 5. LetH be an EDG graph over Σ and Γ. A
reversely indexed edge-unambiguous graph, rIE graph,
overΣ and Γ deϐined on the basis of the graphH is an
EDG graphG = (V,E,Σ,Γ, ϕ)which is isomorphic to
H up to the direction of the edges, such that the follo-
wing conditions are fulϐilled.
1.G contains a directed spanning tree T such that no-
des of T have been indexed due to the Reverse Level
Order Tree Traversal (RLOTT).
2. Nodes ofG are indexed in the same way as nodes of
T .
3. Every edge in G is directed from the node having a
smaller index to the node having a greater index.

The family of all the rIE graphs over Σ and Γ is
denoted by rIEΣ,Γ.

An example of an rIE graph h2 is shown in Fig. 2b.
The indices are ascribed to the graph nodes according
to RLOTT. The edges of the spanning tree T are thic-
kened.

Let us introduce the notion of node level. We say
that a node v of the IE (rIE) graph is on level n, if v is
on level n of the spanning tree5 T constructed as in
Deϐinition 4 (Deϐinition 5).

We deϐine the string-like graph representation of
IE (rIE) graphs as in [19]. (This form of representation

was originally deϐined for Ω graphs in [48].)

Deϐinition 6. Let vk ∈ V be the node of an IE (rIE)
graphH = (V,E,Σ,Γ, ϕ). A characteristic description
of vk is the quadruple ( a, r, (e1 . . . er), (i1 . . . ir) ),
where a is the label of the node vk , i.e. ϕ(vk) = a, r
is the out-degree of vk (the out-degree of the node
designates the number of edges going out from this
node), (i1 . . . ir) is the string of node indices to which
edges going out from vk come (in increasing order),
(e1 . . . er) is the string of edge labels ordered in such
a way that the edge having the label ex comes into the
node having the index ix.

For example,

( e, 3, (p t r), (4 6 7) )

is the characteristic description of the node indexed
with 3 in the graph h1 shown in Fig. 2a.

Deϐinition 7. Let H = (V,E,Σ,Γ, ϕ) be an IE (rIE)
graph, where V = {v1, . . . , vk} is the set of nodes in-
dexed such that vi is indexed with i, I(i), i = 1, . . . , k
is the characteristic description of the node vi. The
string I(1) . . . I(k) is called the characteristic descrip-
tion of the graphH .

Assuming a way of indexing of the graph h1 from
Fig. 2a as it has been deϐined above, we obtain the fol-
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lowing characteristic description of this graph.

a f e a e d c d b
3 2 3 2 0 1 0 1 0

(t s r) (p s) (p t r) (s r) − (p) − (p) −
(2 3 4) (3 5) (4 6 7) (8 9) − (7) − (9) −

Now, the formal properties of the ETPR(k)
reduction-based parsable subclass of edNLC lan-
guages can be presented. As this subclass will be
compared with the ETPL(k) top-down parsable
subclass of edNLC languages6 in the next section,
deϐinitions for both classes must be introduced.
Fortunately, most corresponding notions for both
classes differ only slightly, so they may be formalized
by single deϐinitions with modiϐications. (The modiϐi-
cations for the ETPR(k) class are written in brackets
in the deϐinitions.)

Firstly, to reduce the computational complexity of
a single step of the parsing algorithm the following
constraint is imposed on the form of the right-hand
side graphs of the productions.

Deϐinition 8. Let G = (Σ,∆,Γ, P, Z) be an edNLC
graph grammar. The grammarG is called a TLP graph
grammar, abbrev. from Two-Level Production, if the
following conditions are fulϐilled.
1. P is a ϐinite set of productions of the form (l,D,C),
where : (a) l ∈ Σ\∆,
(b)D is the IE (rIE for the ETPR(k) class) graph having
the characteristic description :

n1(1) n2(2) . . . nm(m) or n1(1), ni(i)
r1 r2 . . . rm 0 ri
E1 E2 . . . Em − Ei

I1 I2 . . . Im − Ii

is a characteristic description of the node
i, i = 1, . . . ,m, n1 ∈ ∆ (i.e. n1 is a terminal la-
bel) and i, i = 2, . . . ,m are nodes on level 2,
(c) C : Γ × {in, out} −→ 2Σ×Σ×Γ×{in,out} is the
embedding transformation.
2. Z is an IE (rIE) graph such that its characteristic
description satisϐies the condition deϐined in point
1(b).

An example of a TLP grammar is shown in Fig. 3.
Now, we will introduce restrictions on the deriva-

tion process, i.e. on the embedding transformation.
The NLC-like embedding transformation operates at
the border between the left- and right-hand sides
of a production and their context. Thus, we do not
have the important context freeness property stated
that reordering of the derivation steps does not
inϐluence the result of the derivation. The lack of the
order-independence property, related to the ϔinite
Church-Rosser, fCR, property (non-overlapping steps
can be done in any order), results in the intractability
of the parsing. Therefore, the power of the NLC-like
embedding transformation must be limited in order
to obtain the fCR property and to guarantee efϐiciency
of parsing. For example, in boundary NLC graph

grammars, deϐined by Rozenberg and Welzl [46],
nonterminal nodes cannot be adjacent (in right-hand
side graphs and in the axiom). In our model [13, 16]
we limit the power of the embedding transformation
in the following way. Firstly, we require that all graphs
in a derivation are (r)IE graphs. In fact, this require-
ments restricts the embedding transformation, which
cannot redirect edges. Secondly, we require that a
derivation process is performed according to the
linear ordering imposed on IE (rIE) graphs7. It is also
assumed [13,14,16] that during a derivation step, the
root of the right-hand side inherits the index from the
replaced node (corresponding to the left-hand side)
and the remaining nodes of the right-hand side get
the next available indices.

Deϐinition9.ATLPgraphgrammarG is called a closed
TLP (rTLP) graph grammarG if for each derivation of
this grammar

Z = g0 =⇒
G

g1 =⇒
G

. . . =⇒
G

gn

each graph gi, i = 0, . . . , n is an IE (rIE) graph.

Deϐinition 10. Let there be given a derivation of a clo-
sed TLP (rTLP) graph grammarG:

Z = g0 =⇒
G

g1 =⇒
G

. . . =⇒
G

gn.

This derivation is called a regular left-hand (right-
hand) side derivation, denoted =⇒

rl(G)
( =⇒

rr(G)
) if :

(1) for each i = 0, . . . , n − 1 a production for a
nonterminal node having the least (greatest) index in
a graph gi is applied,
(2) node indices do not change during a derivation.
A closed TLP (rTLP) graph grammar which rewrites
graphs according to the regular left-hand (right-
hand) side derivation is called a closed TLPO (rTLPO)
graph grammar, abbrev. from (reverse) Two-Level
Production-Ordered.

In order to achieve the requirements imposed by
Deϐinitions 9 and 10, the embedding transformationC
of each production (l,D,C) should fulϐil the following
conditions.
1. C has to re-introduce (without re-directing) the in-
coming edge belonging to the spanning tree T of the
derived (r)IE graph (cf. Deϐinitions 4 and 5).
2. Any other incoming edge can be re-introduced and
duplicated without re-directing. It can also be deleted.
3. An outcoming edge can be:
(a) deleted,
(b) re-introduced without re-directing,
(c) used for generating new edges coming into nodes
of level 2 of the right-hand side8.

Let us deϐine the concepts used for extracting
handles in the analyzed graphs which are matched
against the right-hand sides of productions during
the graph parsing. These concepts will be used for the
ETPL(k) class as well as for the ETPR(k).

Deϐinition 11. Let g be an IE (rIE) graph, l the index of
some node of g deϐined by a characteristic description
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Fig. 4. An example of an ETPL(k) derivaƟon

(n, r, e1 . . . er, i1 . . . ir). A subgraph h of the graph g
consisting of the node indexed with l, nodes having
indices ia+1, ia+2, . . . , ia+m, a ≥ 0, a + m ≤ r,
and edges connecting the nodes indexed with:
l, ia+1, ia+2, . . . , ia+m is called anm-successors handle,
denoted h = m−TL(g, l, ia+1). By 0−TL(g, l,−)we
denote the subgraph of g consisting only of the node
indexed with l.

If the subgraph h of the graph g from Deϐinition 11
consists of the node indexed with l, nodes having in-
dices ia+1, ia+2, . . . , ir, a ≥ 0, and edges connecting
the nodes indexed with: l, ia+1, ia+2, . . . , ir , then it is
denoted h = CTL(g, l, ia+1).

Now, the fundamental constraint which is analo-
gous to that used in a deϐinition of string LL(k) gram-
mars can be imposed. This constraint allows an efϐi-
cient, non-backtracking, top-down parsing scheme for
edNLC grammars to be constructed. In order to intro-
duce the idea of this scheme in an intuitive way, an
LL(k) grammar [36,44] is deϐined.

Let G = (Σ,∆, P, S), Σ a set of symbols, ∆ a set
of terminal symbols, P a set of productions and S the
starting symbol, be a context-free grammar. Let η ∈
Σ∗, and |x| denote the length of the string x ∈ Σ∗.
FIRSTk(η) denotes a set of all the terminal preϐixes of
strings of length k (or less than k, if a terminal string
shorter than k is derived from α) that can be derived
from η in the grammarG9, i.e.

FIRSTk(η) = {x ∈ ∆∗ : (η *=⇒
G

xβ ∧ |x| =
k) ∨ (η *=⇒

G
x ∧ |x| < k) , β ∈ Σ∗}.

Let *=⇒
l(G)

denote a leftmost derivation inG, that is a
derivation such that a production is always applied
to the leftmost nonterminal10, N = Σ \∆ be a set of
nonterminal symbols.

Deϐinition 12. Let G = (Σ,∆, P, S) be a context-free
grammar. The grammarG is called an LL(k) grammar
if for every two leftmost derivations

S *=⇒
l(G)

αAδ =⇒
l(G)

αβδ *=⇒
l(G)

αx

S *=⇒
l(G)

αAδ =⇒
l(G)

αγδ *=⇒
l(G)

αy,

where α, x, y ∈ ∆∗, β, γ, δ ∈ Σ∗, A ∈ N, the follo-
wing condition holds.

If FIRSTk(x) = FIRSTk(y) then β = γ.

The LL(k) condition means that for any step du-
ring a derivation of a stringw ∈ ∆ inG, we can choose
a production in an unambiguous way on the basis of
an analysis of some part of w which is of length at
most k. We can say that an LL(k) grammar has the
property of an unambiguous choice of a production
given the k-length preϐix in the leftmost derivation.
Now, by analogy, we deϐine a PL(k) graph grammar
which has the property of an unambiguous choice of
a production given the k − TL graph in the regular
left-hand side derivation.

Deϐinition 13. Let G = (Σ,∆,Γ, P, Z) be a clo-
sed TLPO graph grammar. The grammar G is called a
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Fig. 5. An example of preserving a potenƟal previous context.

PL(k), abbrev. Production-ordered k-Left nodes unam-
biguous, graph grammar if the following condition is
fulϐilled. Let

Z *=⇒
rl(G)

X1AX2 =⇒
rl(G)

g1 *=⇒
rl(G)

h1

and
Z *=⇒

rl(G)
X1AX2 =⇒

rl(G)
g2 *=⇒

rl(G)
h2 ,

where *=⇒
rl(G)

is the transitive and reϐlexive closure of
=⇒
rl(G)

, be two regular left-hand side derivations, such
thatA is a characteristic description of a node indexed
with l, and X1 and X2 are characteristic descriptions
of subgraphs. Let max be a number of nodes of the
graphX1AX2. If

k − TL(h1, l,max+ 1) ∼= k − TL(h2, l,max+ 1)

then

CTL(g1, l,max+ 1) ∼= CTL(g2, l,max+ 1).

For example, our graph grammar shown in Fig. 3 is
PL(2). Aswe can see in Fig. 4 in order to identifywhich
production has been applied to a node indexedwith 3,
we have to analyze 2 − TL graphs originated in this
node. (1 − TL graphs for productions 2 and 3 are the
same.)

For deϐining reduction-based (bottom-up) parsa-
ble graph grammars we have used the same metho-
dology as in the case of top-down parsable grammars.
That is, we have imposed a constraint which is ana-
logous to that used in the deϐinition of Knuth’s string

LR(k) grammars [34] allowing us to construct an ef-
ϐicient, non-backtracking, bottom-up parsing scheme
for edNLC grammars. Therefore, we ϐirstly deϐine an
LR(k) grammar.
Let *=⇒

r(G)
denote a rightmost derivation inG, that is

a derivation such that a production is always applied
to the rightmost nonterminal11. A string which occurs
in the rightmost derivation of some sentence is called
a right-sentential form.

Deϐinition 14. Let G = (Σ,∆, P, S) be a context-free
grammar. The grammarG is called an LR(k) grammar
if for every two rightmost derivations

S *=⇒
r(G)

αAw =⇒
r(G)

αβw

S *=⇒
r(G)

γBy =⇒
r(G)

αβx,

where w, x, y ∈ ∆∗, α, β, γ ∈ Σ∗, A,B ∈ N, the
following condition holds.

If FIRSTk(w) = FIRSTk(x) then α = γ ,A = B , x = y.

The LR(k) condition means that for each right-
sentential form we can identify a handle (i.e. the
right-hand side of some production) and we can
choose a production in an unambiguous way12 by
looking at most k symbols beyond the handle. We can
say that an LR(k) grammar has a property of both
the identiϐication of a handle and an unambiguous
choice of a production given k symbols ahead in a
right-sentential form. Now, by analogy, we deϐine a
PR(k) graph grammar, which has the property of both
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Fig. 6. A graph h of the language L0 that cannot be generated by any ETPR(k) grammar

an identiϐication of a handle and an unambiguous
choice of a production given a k − TL graph beyond
the handle in a regular right-hand side derivation.

Deϐinition 15. LetG = (Σ,∆,Γ, P, Z) be a closed rT-
LPO graph grammar. The grammarG is called a PR(k),
abbrev. Production-ordered k-Right nodes unambigu-
ous, graph grammar if the following condition is fulϐil-
led. Let

Z *=⇒
rr(G)

X1AX2 =⇒
rr(G)

X1gX2 ,

Z *=⇒
rr(G)

X3BX4 =⇒
rr(G)

X1gX5 ,

and
k − TL(X2, 1, 2) ∼= k − TL(X5, 1, 2) ,

where *=⇒
rr(G)

is the transitive and reϐlexive closure of
=⇒
rr(G)

,A,B are characteristic descriptions of certain
nodes, X1, X2, X3, X4, X5 are characteristic descrip-
tions of subgraphs, g is the right-hand side of a pro-
duction:A −→ g.
Then:

X1 = X3 , A = B , X4 = X5 .
The last restriction that has to be imposed con-

cerns the embedding transformation.We have already
introduced limitations for the embedding transfor-
mation which guarantee that all graphs during a
derivation are IE (rIE) graphs and that node indices
do not change during a derivation (Deϐinitions 9 and
10). Nevertheless, these conditions do not guarantee
that during parsing the characteristic description
of a node does not change (e.g. after its analysis by
a parser). Of course, it is an unwanted effect. For
example, let us modify the deϐinition of production
4 of our grammar shown in Fig. 3e. A modiϐied
production (4’) is shown in Fig. 5b. The results of
applying productions 4 and 4’ to a graph shown in
Fig. 5a are shown in ϐigures 5c and 5d, respectively.
One can easily notice that during parsing with the
modiϐied grammar, after analyzing a node indexed
with 3, its characteristic description changes, because
the embedding transformation of production 4’ does
not re-introduce an edge labelled with p. We will
claim such edges need to be re-introduced. Let us also
notice that the issue concerns only edges incoming to
the root of the right-hand side, since they have already
been analyzed by the parser. (If the embedding trans-
formation for the root node v does not re-introduce

an edge outgoing from v, then the parser, analyzing
the handle originated at v, ”sees” such a situation.)

Deϐinition 16. Let G = (Σ,∆,Γ, P, Z) be a PL(k)
(PR(k)) graph grammar. A pair (b, x), b ∈ ∆, x ∈ Γ,
is called a potential previous context for a node
label a ∈ Σ\∆, if there exists the IE (rIE) graph
g = (V,E,Σ,Γ, ϕ) belonging to a certain regular
left-hand (right-hand) side derivation inG such that :
(k, x, l) ∈ E, ϕ(k) = b and ϕ(l) = a.

Deϐinition 17. A PL(k) (PR(k)) graph grammar
G = (Σ,∆,Γ, P, Z) is called an ETPL(k) (ETPR(k)),
abbrev. from Embedding Transformation - preserving
Production-ordered k-Left (k-Right) nodes unam-
biguous, graph grammar if for each production
(l,D,C) ∈ P the following condition is fulϐilled.
Let l = A, X1, X2, . . . , Xm, where Xi ̸= Xj , i, j =
1, . . . ,m, be labels of nodes indexed with 1, 2, . . . ,m
of the right-hand side graph D. For each poten-
tial previous context (b, y) for A, there exists
(Xi, b, z, in) ∈ C(y, in), i ∈ {1, . . . ,m}. If i = 1,
then z = y, i.e. (X1, b, y, in) ∈ C(y, in).

A parsing algorithm, O(n2), for ETPR(k) graph
grammar was deϐined in [23]. It is a slight modiϐica-
tion of the parsing scheme for ETPL(k) graph gram-
mar [16].

4. GeneraƟve power of ETPR(k) graph langua-
ges
In this section the generative power of ETPR(k)

graph languages is characterized in an analogous way
as was made for ETPL(k) graph languages in [19]. Fi-
nally, two theorems concerning both classes of langua-
ges are proved.

Let X denote a class of graph grammars. Then
L(X) denotes a set of graph languages such that there
exists anX grammarG and L = L(G).
Additionally, we say that a language L is ETPL(k)
(ETPR(k)), if there exists an ETPL(k) (ETPR(k)) gram-
marG such that L = L(G).

Firstly, we will show that the class of ETPR(k)
languages is a proper subclass of the class of edNLC
languages. Comparing the generative power of both
classes, we are interested in their intrinsic properties,
which do not result from assuming the speciϔic index-
ing for graphs as in the case of ETPR(k) languages.
(Since, obviously, any ”ordered” version of a class of
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graph languages is its ”subfamily”.) Therefore, to com-
pare the essential generative power of both families
an ordered version of ”pure” edNLC languages will be
deϐined.
Let H ∈ EDGΣ,Γ. Then H[o] denotes a graph obtai-
ned from H by indexing its nodes and re-directing
(if necessary) its edges in such a way that H[o] fulϐils
the conditions of Deϐinition 5, i.e.H[o] is an rIE graph.
A grammar G = (Σ,∆,Γ, P, Z) is called an ordered

edNLC grammar corresponding toG, denoted edNLCo,
if
L(G) = {H[o] : Z[o] =⇒

rr(G)
H1

[o]
=⇒
rr(G)

H2
[o]

*=⇒
rr(G)*=⇒

rr(G)
Hm

[o] = H[o] andH ∈ EDG∆,Γ}.

Theorem 1. For any k ≥ 0

L(ETPR(k)) ⊆\ L(edNLCo) .
Proof. PART 1: L(ETPR(k)) ⊆ L(edNLCo).
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LetL ∈ L(ETPR(k)), i.e. there exists anETPR(k) gram-
mar G such that L = L(G). We should show that
L ∈ L(edNLCo), i.e. that there exists an edNLCo gram-
marG such that L = L(G) = L(G).

One can easily note that setting G := G is sufϐi-
cient, because anyETPR(k) grammar is also an edNLCo
grammar.
PART 2: L(ETPR(k)) ̸= L(edNLCo).
Wewill deϐine a languageL0 ∈ L(edNLCo) that cannot
be generated by any ETPR(k) graph grammar. Let us
introduce a language which is of the complementary
palindromic form. In case of strings, a complementary
palindrome is a sequence of symbols which reads in
reverse as the complement of the forward sequence.
Itmeans that for each symbol its complementary sym-
bol has to be deϐined. For example, in DNA a symbolA
is complementary to T , andC is complementary toG.
Thus, for example the DNA sequenceGGCATGCC is
a complementary palindrome.

Let L0 consist of rIE graphs of the complemen-
tary palindromic form as the graph h shown in Fig. 6.
Let us assume that a node label c is complementary
to a node label b. The graph h is ”divided” with the
edge (1, u, 2). A string of node labels of a ”path” on the
right-hand side of this edge (without a node indexed
with 2) is a complementary palindrome of a string of
node labels of the left-hand side ”path” (also without
a node indexed with 2). That is, for any n-node graph
h = (V,E,Σ,Γ, ϕ) ∈ L, n - an even number, the fol-
lowing holds. ϕ(1) = a; ϕ(2) = b or ϕ(2) = c; for
an odd index k = 3, 5, . . . , (n − 1): if ϕ(k) = b then
ϕ(k + 1) = c, and if ϕ(k) = c then ϕ(k + 1) = b. E =
{(1, u, i), i = 2, . . . , n} ∪ {(2, y, (n − 1)}, (2, s, n)} ∪
{(k, s, (k + 2)), k = 3, 5, 7, . . . , (n− 3)} ∪ {(k, y, (k +
2)), k = 4, 6, 8, . . . , (n − 2)}. We will call L0 the com-
plementary palindromic graph language.

Now, we deϐine an edNLCo grammar G0 =
(Σ0,∆0,Γ0, P0, Z0) generating the language L0. (Wit-
hout loss of generality we assume that during deriva-
tion all nodes indexed with k = 3, 4, . . . , n are genera-
ted directly as terminal nodes, i.e. not via nonterminal
nodes.)
Σ0 = {a, b, c, A},
∆0 = {a, b, c},
Γ0 = {s, u, y},
P0 and Z0 are shown in Fig. 7.

Now, we will show that L0 cannot be generated by
any ETPR(k) grammar. Let us assume, proving by con-
tradiction, that there exists an ETPR(k) grammar G1

which generatesL0. Then, let us assume that we gene-
rate the n-node graph h, n ≥ 6, belonging to L0. LetD
be the following derivation of h:

Zo =⇒
rr(G)

h1
*=⇒

rr(G)
hk =⇒

rr(G)
hk+1

*=⇒
rr(G)

hr = h.

Let us assume that the graph hk has (2m + 2) nodes
and n ≥ 2m + 6, i.e. we have still to generate at least
four nodes. Let us assume also that hk+1 has more
than (2m + 2) nodes, i.e. new nodes are generated
during hk =⇒

rr(G)
hk+1 ofD.

Note that the graph hk has to be of the form shown

in Fig. 8a. The form of hk results from the following
facts. All the nodes of hk , except for the node indexed
with 2, have to be labelled with terminals. (According
to Deϐinition 10 we apply a production to a nonter-
minal node having the greatest index.) The graph hk

has to be of the proper, i.e. complementary palindro-
mic, form. That is, the right-hand side ”path” has to
be a complementary palindrome of the left-hand side
”path”, because we use a context-free graph grammar
that does not possess themechanisms allowing one to
take into account previous derivation steps (and the
terminal ”context” already derived) in a further deri-
vation process. It means that a graph derived cannot
be rectiϐied later, if it does not conform to the comple-
mentary palindromic form. Ascribing indices to nodes
of hk has also to be deϐinitive since according to De-
ϐinition 10 node indices do not change during a deri-
vation. The edges have to be directed as in Fig. 8a ac-
cording to Deϐinition 5. Obviously, the labels of edges
connecting terminal nodes have to be deϐinitive.

At the step hk =⇒
rr(G)

hk+1 of D we have to ge-
nerate two new nodes simultaneously because of a
palindromic-like structure of h. Let us assume that the
node indexed with (2m+3) of h is labelled with b and
the node indexed with (2m + 4) of h is labelled with
c. (For the opposite labelling reasoning is analogous.)
The production of G1 which is to be applied for ge-
nerating the succeeding pair of complementary nodes
has to be of the form shown in Fig. 8b, where
- X is a nonterminal node used for generating the
succeeding pairs of complementary nodes in further
derivation steps,

- XB is a terminal node labelled with b or XB is a
nonterminal node and the production replacingXB

with a terminal node labelled with b belongs to G1,
and

- XC is a terminal node labelled with c or XC is a
nonterminal node and the production replacingXC

with a terminal node labelled with c belongs toG1.
Let us note that according to Deϐinition 8 the right-
hand side graph of the production (i) has to be a
two-level graph. Moreover, the root of the right-hand
side has to inherit the index from the replaced node.
Thus, the nodeX has to be the root of the right-hand
side. However, it is contrary to the condition of
Deϐinition 8 saying that the root of the right-hand side
has to be a terminal node. Q.E.D.

The parameter k in deϐinitions of both ETPR(k)
and ETPL(k) graph grammars has shown to be very
useful from a practical point of view inmany applicati-
ons of these grammars e.g.: robotics [13], distributed
systems [25], CAD/CAM [18, 22], industrial-like cont-
rol [2, 17], CAE (FEM computing) [27], sign language
recognition [21, 26], computer vision [24]. In [19]
we have proved that by increasing this parameter
we strengthen the generative power of ETPL(k)
grammars. By proving the following theorem, which
establishes the hierarchy of ETPR(k) grammars, we
show that the same holds for the ETPR(k) class.
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Fig. 9. The language that cannot be generated by any ETPR(m) grammar

Theorem 2. For a given k ≥ 0

L(ETPR(k)) ⊆\ L(ETPR(k + 1)) .

Proof. PART 1: L(ETPR(k)) ⊆ L(ETPR(k + 1)).
LetG be an ETPR(k) grammar. One should deϐine such
an ETPR(k + 1) grammarG that L(G) = L(G).

Let us note that it is sufϐicient to set :G = G.
PART 2. L(ETPR(k)) ̸= L(ETPR(k + 1)).
Let us take any k = m. We deϐine an ETPR(m+1) lan-
guage L which cannot be generated by any ETPR(m)
grammar. Let L = L1 ∪ L2. The rIE graphs belonging
to both L1 and L2 are of the cascade-like form shown
in Fig. 9a. Firstly, let us deϐine this cascade-like
structure. Each n-node graph h = (V,E,Σ,Γ, ϕ) ∈ L,
consists of: two nodes indexed with 1 and 2 such

that ϕ(1) = d, ϕ(2) = e, (1, s, 2) ∈ E, and p levels,
p = 1, 2, . . ., assuming that it has at least two levels.
Each level consists of (m+1) nodes indexed as shown
in Fig. 9a. If we denote the hth node of the level lev
with vlevh , then its index ilevh = 2+(lev−1)·(m+1)+h.
A set of edges E contains additionally the following
edges (cf. Fig. 9):
- (2, t1, i11), (2, t2, i12), . . . , (2, t(m+1), i

1
(m+1)),

- for each level l = 2, . . . , p:
(i

(l−1)
1 , t1, i

l
1), (i

(l−1)
1 , t2, i

l
2), . . . , (i

(l−1)
1 , t(m+1), i

l
(m+1)).

Now, we deϐine the way of labelling the graph no-
des belonging to levels l = 1, . . . , p (cf. Figs. 9b and c.)
- If h1 ∈ L1, then ϕ(il1) = a, for h = 2, . . . ,m : ϕ(ilh) =
b, and ϕ(il(m+1)) = b.
- If h2 ∈ L2, then ϕ(il1) = a, for h = 2, . . . ,m : ϕ(ilh) =
b, and ϕ(il(m+1)) = c.
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Fig. 10. The axiom and the producƟons of the ETPR(m+ 1) grammarG

Wewill callL the (m+1)-height-step cascade graph lan-
guage.

Now, let us deϐine an ETPR(m + 1) grammar G =
(Σ,∆,Γ, P, Z)which generates a language L.
Σ = {a, b, c, d, e, S,A,B},∆ = {a, b, c, d, e},Γ =
{s, t1, t2, . . . , t(m+1)}, P and Z are shown in Fig. 10.

It can be easily noted that to generate a graph h1 ∈
L1 having l levels one has to apply production 1 once,
production 3 l times, and production 5 once, and to ge-
nerate a graph h2 ∈ L2 having l levels one has to ap-
ply production 2 once,production 4 l times, and pro-
duction 6 once. The grammarG obviously does not ge-
nerate any graphs not belonging toL. Thus,L = L(G).

Now, we show that G is the only grammar of the
ETPR class which generates L.

Firstly, let us note that graphs belonging to L are,
in fact, trees.

Secondly, according to Deϐinition 8 the right-hand
side graph of any production in an ETPR grammar has
to be a graph of level at most 2. A node of the right-
hand side graph indexed with 1 has to be terminal.
Then, a node of the right-hand side graph indexedwith
2 of the productions used for developing succeeding
levels13 has to be nonterminal14.

Thirdly, let us note that a higher level of any graph
belonging to L has to be generated at one deriva-
tion step, i.e. the right-hand sides of productions used
for developing succeeding levels have to be two-level
trees having (m + 1) children15. To show it, let us as-
sume, proving indirectly, that some level p can be ge-
nerated in stages. It means that at the ϐirst stage we
generate a subtree having k children, k < m + 1,
indexed with: ip1, . . . , ipk (cf. Fig. 9a). Now, on the ba-
sis of a node indexed with ipk we have to generate the
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Fig. 11. The language that cannot be generated by any ETPL(k) grammar

next child, i.e. ip(k+1) with some production p. We have
to use the embedding transformation of p to connect
the newly-generated child with the parent, i.e. to ge-
nerate an edge (i

(p−1)
1 , t(k+1), i

p
(k+1)) (cf. Fig. 9). Ho-

wever, let us note that we will also have to destroy an
edge connecting nodes ipk and ip(k+1) in a further deri-
vation, which is forbidden by the principle of preser-
ving a potential previous context (cf. Deϐinition 17).

On the other hand,G is not an ETPR(m) grammar.
During a derivation of any h ∈ L, in spite of the
fact that m − TL graphs described by Deϐinition
15 are isomorphic, the corresponding right-hand
side graph (the handle) can be reduced to various
left-hand side nonterminals. For example, m − TL
right-hand side graphs of productions 5 and 6 are
isomorphic, however, these productions reduce to
different nonterminalsA andB16. Q.E.D.

At the end of this section we show that both
classes ETPL and ETPR are incomparable.

Theorem 3. There exists

L ∈ L(ETPR(1))

such that for any k ≥ 0

L ̸∈ L(ETPL(k)).

Proof. In [19] (cf. Theorem 4, [19]) we have deϐi-
ned a language L which cannot be generated by any
ETPL(k), k ≥ 0 grammar. The language L consists of
three graphsh1,h2, andh3 shown in Fig. 11a. If the up-
per path ϐinisheswith anode labelled f , then the lower
path can ϐinish with a node labelled either d or e. Ho-
wever, if the upper path ϐinishes with a node labelled
g, then the lowerpath can ϐinishonlywith anode label-
led d. We will call L a third-level contextual graph lan-
guage, since contextual dependencies between pairs
of node labels occur at the third level of a graph.

We will deϐine an ETPR(1) grammar G which ge-
nerates the language L. In Figs. 11b and c we have
shown the proper reductions during the bottom-up
parsing. They help us to deϐine the following grammar
G = (Σ,∆,Γ, P, Z).
Σ = {a, b, c, d, e, f, g, Bde, Bd, Cf , Cg, S}, ∆ =
{a, b, c, d, e, f, g}, Γ = {r, s, t}, the axiom Z consists
of the one-node graph labelled with S, P is shown in
Fig. 12.
One can easily note that L = L(G). Q.E.D.

Theorem 4. There exists

L ∈ L(ETPL(1))

such that for any k ≥ 0

L ̸∈ L(ETPR(k)).
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Proof. Firstly, we deϐine an ETPL(1) language L. Let
L = L1 ∪ L2. Each n-node graph, n ≥ 7, h1 =
(V1, E1,Σ1,Γ1, ϕ1) ∈ L1 is of the form shown in Fig.
13a. The graph consists of a node having the characte-
ristic description (a(1), 2, (tr), (23)) and two paths. A
sequence of nodes in each path is connected with ed-
ges labelled s. The lower path consists of:
- a subsequence of nodes indexed with: 2, . . . , (2k −
2), k ≥ 2 and labelled b,
- a (distinguished) node indexed with 2k, k ≥ 2 and
labelled d, and
- a subsequence of nodes indexed with: (2k +
2), . . . , k ≥ 2 and labelled f .
The upper path consists of:
- a subsequence of nodes indexed with: 2, . . . , (2k −
1), k ≥ 2 and labelled c,
- a (distinguished) node indexed with (2k + 1), k ≥ 2
and labelled e, and
- a subsequence of nodes indexed with: (2k +
3), . . . , k ≥ 2 and labelled g.
The lengths of both paths (deϐined as a number of no-

des in a sequence) can be various.
Additionally, there exists a bridge = ((2k +

1), u, (2k + 2)) ∈ E1. In other words, let dist(a, d) de-
note the number of nodes between the node labelled a
and the node labelled d, and dist(a, e) denotes a num-
ber of nodes between the node labelled a and the node
labelled e. Then, dist(a, d) = dist(a, e) and there ex-
ists a bridge ∈ E1.

L2 consists of graphs analogous to the graphs of
L1. However, dist(a, d) ̸= dist(a, e) and, there is no
edge (bridge) connecting both paths. Summing up, an
edge called a bridge occurs in a graph h ∈ L iff
dist(a, d) = dist(a, e). We will call L the contextually-
conditioned-bridge graph language.

Let us the deϐine an ETPL(1) grammar G =
(Σ,∆,Γ, P, Z) generating the language L.
Σ = {a, b, c, d, e, f, g, B,C,D,E, F,G}, ∆ =
{a, b, c, d, e, f, g}, Γ = {p, r, s, t, u, x, y}, P and Z are
shown in Fig. 14.

An example of generating a bridge in case
dist(a, d) = dist(a, e) is shown in Fig. 13b. One can
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Fig. 13. The ETPL(1) language that cannot be generated by any ETPR(k) grammar

easily see that L = L(G).
Now, we show that L cannot be generated by any

ETPR(k) grammar. First of all, let us note that any rIE
graph h1 ∈ L1 has to be indexed as shown in Fig. 15a.
If h1 has to belong to L1, then dist(a, d) = dist(a, e).
Assuming indexing deϐined as in Fig. 15a (i.e. a node
labelled e is indexed with k), it means that a node la-
belled d has to be indexed with (i+ k − 3).

According to the Deϐinition 10 of ETPR(k) gram-
mars the upper path of h1 has to be generated ϐir-
stly, as we can see in Fig. 15b. (An edge (2, r, i) is to
be established in order to generate a bridge.) Howe-
ver, one can easily see that we do not know whether
an index j of a node labelled d fulϐils the condition:
j = (i + k − 3)17. In consequence, we do not know
whether to establish a bridge (in case h1 ∈ L1) or not
(in case h1 ∈ L2). Q.E.D.

5. CF and NLC Languages with Polynomial
Membership Problem
As stated in the introduction, research into the the-

ory of parsing for NLC graph grammars has been con-
ducted for thirty years. The graph grammars of the
edNLC class [30]were chosen as the basis for this rese-
arch from the outset, which has proved to be appropri-
ate. On the one hand, the edNLC class has been revea-
led as descriptively strong enough to be successfully
applied for solving the previously mentioned real-
world problems [2, 13, 17, 18, 21, 22, 24–27]18. On
the other hand, the edNLC class has turned out to be
ϐlexible enough to enable us to deϐine the determinis-
tic subclasses with polynomial membership problem,
and in consequence - the efϐicient parsing algorithms.
Moreover, the way of deϐining edNLC graph grammars
has enabled to deϐine these deterministic subclasses,
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Fig. 14. The ETPL(1) grammar generaƟng the contextually-condiƟoned-bridge graph language.

using constructs and mechanisms analogous to those
used in the theory of parsing of string languages. This
analogy is especially noteworthy, since from the met-
hodological/paradigmatic point of view, analogies of
this kind are highly desirable [21].

First of all, let us note that the essential proper-
ties of both subclasses of edNLC graph grammars,
namely top-down parsable ETPL(k) and reduction-
based (bottom-up) parsable ETPR(k), expressed by
Deϐinitions 13 and 15 are analogous to the deϐiniti-
ons of theirs counterparts, namely subclasses of top-
down parsable LL(k) [36,44] and bottom-up parsable
LR(k) [34] CF (context-free) grammars in the parsing
theory of string languages.

Secondly, these analogies have proved to be useful
when studying the formal properties of ETPR(k) lan-
guages presented in a previous section. For example,
the well-known fact that the (string) CF language of
palindromes cannot be generated by any LR(k) gram-

mar has inspired us to construct the edNLC comple-
mentary palindromic graph language in order to show
that it cannot be generated by any ETPR(k) gram-
mar (the proof of Theorem 1). On the other hand, in-
vestigating whether ETPR(k) languages constitute a
hierarchy, we have analyzed the Mickunas-Lancaster-
Schneider stratiϐication-based method used for pro-
ving that LR(k) languages do not constitute a hierar-
chy [38]. The study has revealed that the stratiϔication
trick [38] cannot be made in case of graph structures.
Knowing why this is impossible, we have been able to
deϐine the ETPR (m+1)-height-step cascade graph lan-
guage in order to show that ETPR(k) languages con-
stitute a hierarchy (the proof of Theorem 2).

In our previous paper concerning the generative
power of ETPL(k) languages [19] we have proved,
among others, the following two theorems.

Theorem (1. in [19]) For a given k ≥ 0
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L(ETPL(k)) ⊆\ L(ETPL(k + 1)) .

Theorem (2. in [19]) For any k ≥ 0

L(ETPL(k)) ⊆\ L(edNLCo) .

These two theorems together with the ones pro-
ved in a previous section allow us to establish a di-
agram presenting the relationships among the fami-
lies of parsable edNLC languages shown in Fig. 16b. An
analogous diagram for (string) CF languages is shown
in Fig. 16a. The analogy between both basic classes
of languages, i.e. (string) CF and (graph) edNLC, can
be easily noted. However, there are also some essen-
tial differences. The ϐirst one consists of the lack of a
hierarchy in the case of a bottom-up parsable subclass
of the edNLC class. The second difference is crucial
from an application point of view. Whereas the family
of LL-type languages is strictly contained in the fa-
mily of LR-type languages, the classes ETPL and ETPR
are not comparable. Although the insufϐicient descrip-
tive power of ETPL-type languages for solving certain
real-world application problems was the original mo-
tivation of the author for conducting research into a
bottom-up parsable subclass of edNLC grammars, ϐi-
nally it was shown that both parsable subclasses are
needed and that they complement each other.

6. Concluding Remarks
The following two goalswere the focus of our rese-

arch intoNodeLabel Controlled (NLC) graphgrammars
formulated in [30].

- To establish a theory of parsing for NLC graph lan-
guages (the theoretical-oriented research area).

- To apply this theory to various real-world pro-
blems, which require efϐicient algorithmic sche-
mes of graph (sets of graphs) processing (the
application-oriented research area), for their solu-
tion.
Two generic types of parsable subclasses of lan-

guages with polynomial membership problem are
considered in the theory of parsing: the top-downpar-
sable languages and the reduction-based (bottom-up)
parsable ones. These twogeneric subclasses haveboth
their pros and cons. Therefore, within the theoretical-
oriented area of our research two subclasses of NLC
graph grammars have been developed, namely top-
down parsable ETPL(k) (analogous to LL(k) gram-
mars [36,44]) and bottom-up parsable ETPR(k) (ana-
logous to LR(k) grammars [34]). The generative po-
wer of the former has been presented in [19] and the
latter - in this paper. Additionally, we have compared
generative power of both subclasses as well. Finally,
we have discussed the analogy between the triad of CF
- LL(k) - LR(k) string languages and the triad of NLC -
ETPL(k) - ETPR(k) graph languages.

Apart from thepreviously discussed theoretical re-
sults, both parsable subclasses of NLC graph gram-
mars have been successfully used in a variety of ap-
plications such as: scene analysis in robotics [13], soft-
ware allocation in distributed systems [25], CAD/CAM
integration [18, 22], reasoning in real-time expert sy-
stems [2, 17], mesh reϐinement (ϐinite element met-
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Fig. 16. The analogy between CF and edNLC: a) relaƟonships among families of parsable CF languages, b)
relaƟonships among families of parsable edNLC languages

hod, FEM) in CAE systems [27], sign language recog-
nition [21, 26] and computer vision [24] within the
application-oriented area of our research .

Summing up, the class ofNLC graph grammars has
proved tobe anattractive theoreticalmodel becauseof
its well-balanced properties. That is, on one hand, due
to its simplicity, formal elegance and strong descrip-
tive power, and on the other hand because of its ϐlex-
ibility allowing it to be used in a variety of real-world
applications. In our opinion,NLC graphgrammarspro-
vide an attractive reference model for the theory of
parsing of graph languages and that they will play a
key role in the further development of this theory.

Notes
1NLC grammars are introduced below.
2This condition concerning (r)IE graphs can be fulϐilled easily

in practice. (r)IE graphs have been used as a descriptive formalism
for representing: combinations of objects of scenes analyzed by in-
dustrial robots [13], conϐigurations of hardware/software compo-
nents analyzed by distributed software allocators [25], structures
consisting of geometrical/topological features of machine parts in
CAD/CAM integration systems [18, 21], semantic networks/frames
in real-time expert systems [2, 17], grids analyzed with Finite
Element Analysis (FEA) methods in Computer Aided Engineering
(CAE) systems [27], hand postures analyzed by sign language re-
cognition systems [21,26].

3That is, (some) edges of G can be re-directed with respect to
their counterparts inH .

4Let us recall that LOTTmeans that for each node ϐirstly the node
is visited, then its child nodes are put into the FIFO queue. This type
of a tree traversal is also known as the Breadth First Search (BFS)
scheme.

5We assume that the root is on level 1, its children are on level 2,
etc.

6Formal properties of the ETPL(k) class have been presented in
[19].

7Analogously, as for parsable LL(k)/LR(k) string grammars a
leftmost/rightmost derivation is required.

8The formalization of these conditions is contained in the paper
on inferencing ETPL(k) graph grammars [20].

9Bothnotions:k−TL graphandFIRSTk preϐix play an analogous
role in considered models.

10A regular left-hand side derivation in our model is analogous to
a leftmost derivation for CF grammars.

11A regular right-hand side derivation in our model is analogous
to a rightmost derivation for CF grammars.

12That is, we can choose a proper left-hand side.
13That is, productions 1, 2, 3, 4 inG.
14In [19] (Lemma 1, p. 207) we have proved that the index of a

replaced node is always preserved in our model.
15As it is in productions 1, 2, 3, 4.
16To determine a proper reduction (unambiguously) one has to

analyze (m+ 1)− TL graphs instead.
17Obviously, at any derivation stepwe do not knowhowmany no-

des labelled with b have been generated till this step.
18Let us note that although syntactic pattern recognition pro-

blems have been the main motivation for the application-oriented
part of this research, it was not limited to this area and has inclu-
ded e.g. distributed systems, reasoning over ontologies in expert sy-
stems.
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[14] M. Flasiński, “Characteristics of edNLC-graph
grammars for syntactic pattern recognition”,
Computer Vision, Graphics and Image Processing,
vol. 47, 1989, 1–21.
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[23] M. Flasiński, “Interpreted graphs and ETPR(k)
graph grammar parsing for syntactic pattern re-
cognition”, Machine Graphics and Vision, vol. 27,
2018, 3–19.
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