Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article describes design solutions and test results of a mobile device for the measurement of threshold perception frequency of the flickering source of visible light. The device consists of an optical component, a programmable module and a control module. The measurement can be performed on the light source of any color in conjunction with a colored backlight. The authors of the research work developed and tested a unique solution that integrates a subjective measurement of the flicker frequency ff and the blending frequency fm fusing in the flicker fusion test (FFT) with the registration of pupil vibrations that gives information about the level of activation of the autonomic nervous system (ANS). The ANS activation level is estimated in the test called the pupillographic sleepiness test (PST). It is an objective source of data on the level of fatigue, reduced concentration or sleepiness of a subject. The authors focused on the description of the measurement section related to the measurement of pupillary unrest index (PUI) and FFT parameters. The construction of the device allows for its use both in laboratory tests, as well as in terms of everyday human functioning.
Wydawca
Czasopismo
Rocznik
Tom
Strony
147--156
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
- Military Institute of Aviation Medicine, Aviation Bioengineering Department, Warsaw, Poland
autor
- Military Institute of Aviation Medicine, Aviation Bioengineering Department, Warsaw, Poland
autor
- Military University of Technology, Electronic Department, Warsaw, Poland
Bibliografia
- [1] Andrews TJ, White LE, Binder D, Purves D. Temporal events in cyclopean vision. Proc Natl Acad Sci U S A 1996;93(8):3689–92.
- [2] Curran S, Wattis J. Critical flicker fusion threshold: a potentially useful measure for the early detection of Alzheimer's disease. Human Psychopharmacol Clin Exp 2000;15:103–12.
- [3] Romero-Gómez M. Critical flicker frequency: it is time to break down barriers surrounding minimal hepatic encephalopathy. J Hepatol 2007;10(11):67–73.
- [4] Truszczyński O, Wojtkowiak M, Biernacki MK. The effect of hypoxia on the critical flicker fusion threshold in pilots. Int J Occup Med Environ Health 2009;22(1):13–8.
- [5] Robinson AE, De Sa VR. Spatial properties of flicker adaptation. Vision Res 2012;70:2–6.
- [6] Shady S, MacLeod DIA, Fisher HS. Adaptation from invisible flicker. Proc Natl Acad Sci U S A 2004;101(14):5170–3.
- [7] Różanowski K, Murawski K. An infrared sensor for eye tracking in a harsh car environment. Acta Phys Pol A 2012;5:874–9.
- [8] Seitz AR, Nanez JE, Holloway SR, Watanabe T. Visual experience can substantially alter critical flicker fusion thresholds. Human Psychopharmacol Clin Exp 2005;20: 55–60.
- [9] Shankar H, Pesudovs K. Critical flicker fusion test of potential vision. J Cataract Refract Surg 2007;33(2):232–9.
- [10] Clement VJ. Fatigue of nervous system through Flicker Fusion thresholds after a maximum incremental cycling test. J Sport Health Res 2011;3(1):1–21.
- [11] Carmel D, Saker F, Rees G, Lavie N. Perceptual load modulates conscious flicker perceptron. J Vision 2007;7 (14):1–13.
- [12] Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000.
- [13] Mizokami Y, Werner S. Nonlinearities in colour coding: compensating colour appearance for the eye's spectral sensitivity. J Vision 2006;6:996–1007.
- [14] Küllerand RT, Laike T. The impact of flicker from fluorescent lighting on well-being, performance and physiological arousal. Ergonomics 1998;41(4):433–47.
- [15] Veitchand J, McColl S. Modulation of fluorescent light: flicker rate and light source effects on visual performance and visual comfort. Light Res Technol 1995; 27(4):243–56.
- [16] Schuhfried G, Test FLIM. Manual of the Vienna Test System. Mödling: SCHUHFRIED GmbH; 1999.
- [17] Webster MA. Adaptation and visual coding. J Vision 2011;11(5):1–23.
- [18] Życzkowski M, Różanowski K, Murawski K, Markowski K, Markowski P. Research and parameter optimization the infrared sensor for eye track. Acta Phys Pol A 2012;5:942–5.
- [19] Murawski K, Różanowski K, Krej M. Research and parameter optimization of the pattern recognition algorithm for the eye tracking infrared sensor. Acta Phys Pol A 2013;3(124):513–6.
- [20] Murawski K, Różanowski K. Pattern recognition algorithm for eye tracker sensor video data analysis. Acta Phys Pol A 2013;3(124):509–12.
- [21] Różanowski K, Murawski K. Optical sensor to monitor pupillary light reflex. Acta Phys Pol A 2013;3(124):558–62.
- [22] Cameron AM, Lam JSC. Features of the human rod bipolar cell ERG response during fusion of scotopic flicker. See Perceiv 2012;25(6):545–60.
- [23] Ruseckaite R, Lamb TD, Pianta MJ, Cameron AM. Human scotopic dark adaptation: comparison of recoveries of psychophysical threshold and ERG b-wave sensitivity. J Vision 2011;11(8):1–16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-886f63c4-9544-4417-a43a-f8994a72f257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.