PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of chitosan coatings on the corrosion resistance of magnesium alloys in sodium sulphate solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ powłok chitozanowych na odporność korozyjną stopów magnezu w roztworze siarczanu sodu
Języki publikacji
EN
Abstrakty
EN
The influence of polysaccharide chitosan coatings on the corrosion resistance of magnesium alloys Mg1Ca, Mg1Ca1Si and Mg4Zn1Ca is studied in 0.1 M sodium sulphate solution. It has been shown that localized corrosion of all magnesium alloys proceeds along grain boundaries and around precipitates. After long-term immersion of magnesium alloys (Mg1Ca and Mg4Zn1Ca) metallic ions are detected in the solution. The chitosan and chitosan/TiO2 composite coatings accelerate corrosion of Mg1Ca, Mg1Ca1Si and Mg4Zn1Ca in sodium sulphate based solutions.
PL
Badano wpływ polisacharydowych chitozanowych powłok na odporność korozyjną stopów magnezu typu Mg1Ca , Mg1Ca1Si i Mg4Zn1Ca w 0,1 M roztworze siarczanu VI sodu (Na2SO4). Korozja tych stopów przebiega wzdłuż granic ziaren i wokół wydzieleń. Po kilkudziesięciu godzinach ekspozycji stopów w roztworze elektrolitu jony metali były obecne w roztworze w przypadku stopów Mg1Ca i Mg4Zn1Ca. Obecność powłok chitozanowych i powłok chitozanowych zawierających TiO2 powodowała przyspieszenie korozji stopów magnezu w roztworze siarczanu VI sodu.
Rocznik
Tom
Strony
368--371
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 street, 30-059 Kraków, Poland
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 street, 30-059 Kraków, Poland
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 street, 30-059 Kraków, Poland
Bibliografia
  • [1] Boucetta C., Mohamed Kacimi, Alain Ensuque, Jean-Yves Piquemal, Francois Bozon-Verduraz, Mahfoud Ziyad. 2009. Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite. Applied Catalysis A 356 (2) : 201–210.
  • [2] Eliezer D., E. Aghion, FH. Froes. 1998., Magnesium science, technology and applications. Advance Performance Materials 5 : 201–212.
  • [3] Fan Y, G. Wu, C .Zhai. 2006. Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy. Materials Science and Engineering 433A : 208–215.
  • [4] Hornberger H., S. Virtanen, A.R. Boccaccini.2012. Biomedical coatings on magnesium alloys – A review. Acta Biomaterialia 8 : 2442–2455.
  • [5] James DW. 1969. Review paper. High damping metals for engineering applications. Materials Science Engineering 4 (1) : 1–8.
  • [6] Kadari Ahmed, Mostefa Rabah, Mahi Khaled, Badaoui Mohamed, Mebarek Mokhtar. 2016. Optical and structural properties of Mn doped MgO powders synthesized by Sol-gel process. Optik 127 : 8253–8258.
  • [7] Kot I., H. Krawiec. 2015. The use of a multiscale approach in electrochemistry to study the corrosion behaviour of as-cast AZ91 magnesium alloy. Journal of Solid State Electrochemistry 19 : 2379–2390.
  • [8] Krawiec H., Iwona Kot. 2015. Corrosion Behaviour of Magnesium Alloys in Ringer’s solution, Annales de Chimie - Science des Matériaux 39 (3–4) : 159–166.
  • [9] Krawiec H., S. Stanek, V. Vignal, J. Lelito, J. Suchy. 2011. The use of microcapillary techniques to study the corrosion resistance of AZ91 magnesium alloy at the microscale. Corrosion Science 53 : 3108–3113.
  • [10] Mark P. S., M. P. Alexis, H. Jarewala, D. George. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27 : 1728–1734.
  • [11] Nabil Nassif, Ibrahim Ghayad. 2013. Corrosion Protection and Surface Treatment of Magnesium Alloys Used for Orthopedic Applications. Advances in Materials Science and Engineering 2013 : 1–10.
  • [12] Srinivasan A., S. Ningshen, U. Kamachi Mudali, U.T.S. Pillai, B.C. Pai. 2007. Effect of alloying additions on the corrosion behavior of AZ91 magnesium alloy. Intermetallics 15 : 1511–1517.
  • [13] Witte F., V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg. 2005. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26 (17) : 3557–3563.
  • [14] Wu G., Y. Fan, H. Gao, C. Zhai, Y.P. Zhu. 2005. The Effect of Ca and Rare Earth Elements on the Microstructure and Corrosion Behavior of AZ91D. Materials Science and Engineering A 408 : 255–263.
  • [15] Xin Y., T. Hu, P.K. Chu. 2011. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomaterialia 7 : 1452–1459.
  • [16] Yun Y. H., Z. Dong, D. Yang, M. J. Schulz, V. N. Shanov, S. Yarmolenko, Z. Xu, P. Kumta, Ch. Sfeir. 2009. Biodegradable Mg corrosion and osteoblast cell culture studies Materials Science and Engineering C 29 : 1814-1821.
  • [17] Zhang L., Z. Y. Cao, Y. B. Liu, G. H. Su, L. R. Cheng. 2009. Effect of Al content on the microstructures and mechanical properties of Mg-Al alloys. Materials Science and Engineering 508A : 129–133.
Uwagi
This work is supported by the contract ("praca statutowa") no. 11.11.170.318, task 12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-886dc1b3-08db-4726-ab24-0561d40abe92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.