PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contribution of liquid-and gas-side mass transfer coefficients to overall mass transfer coefficient in Taylor flow in a microreactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas-liquid microreactors find an increasing range of applications both in production, and for chemical analysis. The most often employed flow regime in these microreactors is Taylor flow. The rate of absorption of gases in liquids depends on gas-side and liquid-side resistances. There are several publications about liquid-side mass transfer coefficients in Taylor flow, but the data about gas-side mass transfer coefficients are practically non existent. We analysed the problem of gas-side mass transfer resistance in Taylor flow and determined conditions, in which it may influence the overall mass transfer rate. Investigations were performed using numerical simulations. The influence of the gas diffusivity, gas viscosity, channel diameter, bubble length and gas bubble velocity has been determined. It was found that in some case the mass transfer resistances in both phases are comparable and the gas-side resistance may be significant. In such cases, neglecting the gas-side coefficient may lead to errors in the experimental data interpretation.
Rocznik
Strony
35--45
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish A cademy of Sciences, Ks. Trojdena 4; 02-109 Warsaw; Poland
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Abolhasani M., Singh M., Kumacheva E., Günter A., 2012. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents. Lab Chip, 12, 1611-1618. DOI: 10.1039/c2lc21043f.
  • 2. Aussillous P., Quéré G., 2000. Quick deposition of a fluid on the wall of a tube. Physics Fluids, 12, 2367–2371. DOI: 10.1063/1.1289396.
  • 3. Bretherton F.P., 1961. The motion of long bubbles in tubes. J. Fluid Mechanics, 10, 166–188.
  • 4. Chambers R.D., Holling D., Spink R.C.H., Sandford G., 2001. Elemental fluorine Part 13. Gas–liquid thin film microreactors for selective direct fluorination. Lab Chip, 1, 132-137. DOI: 10.1039/B108841F.
  • 5. Churski K., Korczyk P., Garstecki P., 2010. High-throughput automated droplet microfluidic system for screening of reaction conditions. Lab Chip, 10, 816-818. DOI: 10.1039/B925500A.
  • 6. Danckwerts P.V., 1970. Gas-liquid reactions. McGraw-Hill, New York.
  • 7. Dietrich N., Loubiere K., Jimenez M., Hebrard G., Gourdon C., 2013. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in straight millimetric square channel. Chem. Eng. Sci ., 100, 172-182. DOI: 10.1016/j.ces.2013.03.041.
  • 8. Ehrich H., Linke D., Morgenschweis K., Baerns M., Jahnish K., 2002. Application of microstructured reactor technology for the photochemical chlorination of alkylaromatics. Chimia, 5, 647-653.
  • 9. Fogg P.G.T., Gerrard W., 1991. Solubility of gases in liquids. Wiley, Chichester.
  • 10. Higbie R., 1935. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans.Am. Inst. Chem. Engrs., 35, 365-389.
  • 11. Hessel V., Angelli P., Gavriilidis A., Lowe H., 2005. Gas−liquid and gas−liquid−solid microstructured reactors: contacting principles and applications.Ind. Eng. Chem. Res., 44, 9750–9769. DOI: 10.1021/ie0503139.
  • 12. Ilnicki F., Sobieszuk P., Pohorecki R., 2009. Simulation of the two phase flow in a closed microchannel. Chem. Proc. Eng. 30, 205-216.
  • 13. Lefortier S.G.R., Hamersma P.J., Bardow A., Kreutzer M.T., 2012. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents. Lab Chip, 12, 3387-3391. DOI: 10.1039/c2lc40260b.
  • 14. Shao N., Gavriilidis A., Angeli P., 2010. Mass transfer during Taylor flow in microchannels with and without chemical reaction. Chem. Eng. J., 160, 873-887. DOI: 10.1016/j.cej.2010.02.049.
  • 15. Sobieszuk P., Cygański P., Pohorecki R., 2008. Volumetric liquid side mass transfer coefficient in a gas – liquid microreactor. Chem. Proc. Eng., 29, 651-661.
  • 16. Sobieszuk P., Pohorecki R., Cygański P., Grzelka J., 2011. Determination of the interfacial area and mass transfer coefficients in the Taylor gas–liquid flow in a microchannel. Chem. Eng. Sci., 66, 6048-6056. DOI: 10.1016/j.ces.2011.08.029.
  • 17. Sobieszuk P., Aubin J., Pohorecki R., 2012. Hydrodynamics and mass transfer in gas-liquid flows in microreactors. Chem. Eng. Technol., 35, 1346-1358. DOI:10.1002/ceat.201100643.
  • 18. van Baten J.M, Krishna R., 2004. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries. Chem. Eng. Sci., 59, 2535-2545. DOI: 10.1016/j.ces.2004.03.010.
  • 19. Yue J., Chen G., Yuan Q., Luo L., Gonthier Y., 2007. Hydrodynamics and mass transfer characteristics in gas liquid flow through a rectangular microchannel. Chem. Eng. Sci., 62, 2096-2108. DOI: 10.1016/j.ces.2006.12.057.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-886ac2a2-ff9b-4611-8740-3f260125ff2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.