Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We construct the Lie algebra of extended symmetry group for the Monge–Ampere type Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equation. This algebra includes novel generators that are unobtainable within the framework of the classical Lie approach and correspond to non-point group transformation of dependent and independent variables. The expansion of symmetry is achieved by introducing new variables through second-order derivatives of the dependent variable. By integrating the Lie equations, we derive transformations that enable the generation of new solutions to the Witten–Dijkgraaf–Verlinde–Verlinde equation from a known one. These transformations yield formulas for obtaining new solutions in implicit form and Bäcklund-type transformations for the nonlinear associativity equations. We also demonstrate that, in the case under study, introducing a substitution of variables via third-order derivatives, as previously used in the literature, does not yield generators of non-point transformations. Instead, this approach produces only the Lie groups of classical point transformations. Furthermore, we perform a group reduction of partial differential equations in two independent variables to a system of ordinary differential equations. This reduction leads to the explicit solution of the fully nonlinear differential equation. Notably, the symmetry group of non-point transformations expands significantly when this method is applied to the second-order differential equation, resulting in a corresponding infinite-dimensional Lie algebra. Finally, we show that auxiliary variables can be systematically derived within the framework of a generalized approach to symmetry reduction of differential equations.
Czasopismo
Rocznik
Tom
Strony
251--274
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
autor
- AGH University of Krakow, Faculty of Applied Mathematics, al. Mickiewicza 30, 30–059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Applied Mathematics, al. Mickiewicza 30, 30–059 Krakow, Poland
Bibliografia
- [1] G.W. Bluman, J.D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969), 1025–1042.
- [2] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1981.
- [3] G.W. Bluman, Z. Yang, A symmetry-based method for constructing nonlocally related partial differential equation systems, J. Math. Phys. 54 (2013), 093504.
- [4] R. Conte, M.L. Gandarias, Symmetry reductions of a particular set of equations of associativity in two-dimensional topological field theory, J. Phys. A: Math. Gen. 38 (2005), 1187–1196.
- [5] R. Dijkgraaf, H. Verlinde, E. Verlinde, Topological strings in d < 1, Nucl. Phys. B 352 (1991), 59–86.
- [6] R.K. Dodd, R.K. Bullogh, Bäcklund transformations for sine-Gordon equations, Proc. R. Soc. Lond. A 351 (1976), 499–523.
- [7] B. Dubrovin, Geometry of 2D topological field theories, [in:] R. Donagi, B. Dubrovin, E. Frenkel, E. Previato, Integrable Systems and Quantum Groups, Lecture Notes in Mathematics, vol. 1620, Montecatini Terme, Italy, 1993, 120–348.
- [8] B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamilton theory, Russ. Math. Surv. 44 (1989), 35–124.
- [9] E.V. Ferapontov, On integrability of 3 × 3 semi-Hamiltonian hydrodynamic type systems which do not possess Riemann invariants, Physica D: Nonlinear Phenomena 63 (1993), 50–70.
- [10] E.V. Ferapontov, On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Physics Letters A 179 (1993), 391–397.
- [11] E.V. Ferapontov, Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Theor. Math. Phys. 99 2 (1994), 567–570.
- [12] E.V. Ferapontov, Dupin hypersurfaces and integrable hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Diff. Geom. Appl. 5 (1995), 121–152.
- [13] E.V. Ferapontov, Hypersurfaces with flat centroaffine metric and equations of associativity, Geometriae Dedicata 103 (2004), 33–49.
- [14] E.V. Ferapontov, O.I. Mokhov, Equations of associativity in two-dimensional field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type, Functional Analysis and Applications 30 (1996), 195–203.
- [15] E.V. Ferapontov, C.A.P. Galvão, O.I. Mokhov, Y. Nutku, Bi-Hamiltonian Structure in 2-d Field Theory, Commun. Math. Phys. 186 (1997), 649–669.
- [16] E.V. Ferapontov, L. Hadjikos, K.R. Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, International Mathematics Research Notices 3 (2010), 496–535.
- [17] W.I. Fushchych, I.M. Tsifra, On a reduction and solutions of nonlinear wave equations with broken symmetry, J. Phys. A 20 (1987), L45-L48.
- [18] A.V. Kiselev, Methods of geometry of differential equations in analysis of integrable models of field theory, Fundamentalnaya i Prikladnaya Matematika 10 (2004), 57–165.
- [19] O.I. Mokhov, Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations, [in:] S.P. Novikov (ed.), Topics in Topology and Mathematical Physics, Transl. Am. Math. Soc., Ser. 2, vol. 170, Am. Math. Soc., Providence, 1995, 121–151.
- [20] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York, 1993.
- [21] P.J. Olver, P. Rosenau, The construction of special solutions to partial differential equations, Phys. Lett. A 114 (1986), 107–112.
- [22] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
- [23] M.V. Pavlov, R.F. Vitolo, On the bi-Hamiltonian geometry of WDVV equations, Lett. Math. Phys. 105 (2015), 1135–1163.
- [24] S.P. Tsarëv, The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR Izv. 37 (1991), 397–419.
- [25] I. Tsyfra, Non-local ansätze for nonlinear heat and wave equations, J. Phys. A: Math. Gen. 30 (1997), 2251–2262.
- [26] I. Tsyfra, A. Napoli, A. Messina, V. Tretynyk, On new ways of group methods for reduction of evolution-type equations, J. Math. Anal. Appl. 307 (2005), 724–735.
- [27] J. Vašíček, R. Vitolo, WDVV equations and invariant bi-Hamiltonian formalism, J. High Energ. Phys. 129 (2021).
- [28] E. Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990), 281–332.
- [29] R.Z. Zhdanov, I.M. Tsyfra, R.O. Popovych, A precise definition of reduction of partial differential equations, J. Math. Anal. Appl. 238 (1999), 101–123.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-886aa29e-3f6c-420c-b98f-0e89f12cf23b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.