PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wave Propagation Modeling and Amplitude-Variation-with-Offset Response in a Fractured Coalbed

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coalbed methane can be detected employing the amplitudevariation- with-offset technique. However, there are two issues in applying this technique to a coalbed: strong azimuthal anisotropy resulting from high-density fractures, and the seismic response being composed of many or several individual reflections within the coalbed. To overcome these difficulties, we present an exact solution for reflections in extensive dilatancy anisotropy media. First, we build a three-layer model and simulate the wave propagation in this model. Then we derive an exact P- and converted S-wave reflection coefficient equation based on boundary conditions. Finally, substituting given model parameters into the exact equation, we obtain the variation in the reflection coefficient with incidence angle. The results show that the fracture factors, wavelet frequency and thickness of the coalbed have different effects on the reflection coefficient. Furthermore, we create a synthetic seismogram by forward calculation, and the result fits well with results of the exact equation.
Czasopismo
Rocznik
Strony
815--842
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Coal Resources and Mine Safety, China University of Mining & Technology (Beijing), Beijing, China
autor
  • State Key Laboratory of Coal Resources and Mine Safety, China University of Mining & Technology (Beijing), Beijing, China
autor
  • State Key Laboratory of Coal Resources and Mine Safety, China University of Mining & Technology (Beijing), Beijing, China
autor
  • State Key Laboratory of Coal Resources and Mine Safety, China University of Mining & Technology (Beijing), Beijing, China
autor
  • Geophysical Prospecting Institute, China National Administration of Coal Geology, Zhuozhou, China
Bibliografia
  • [1] Aki, K., and P.G. Richards (1980), Quantitative Seismology, W.H. Freeman & Co, New York.
  • [2] Ali, A., and M. Jakobsen (2011), Seismic characterization of reservoirs with multiple fracture sets using velocity and attenuation anisotropy data, J. Appl. Geophys. 75, 3, 590-602, DOI: 10.1016/j.jappgeo.2011.09.003.
  • [3] Auld, B.A. (1990), Acoustic Fields and Waves in Solids, Krieger Publ. Malabar.
  • [4] Bachu, S., and S. Bell (2001), Stress regime in the Cretaceous succession of the Alberta basin: A predictor for coal bed methane producibility. In: Rock the Foundation Convention, 18-22 June 2001, Canadian Society of Petroleum Geologists, Calgary, Canada, 003-1-003-5.
  • [5] Bakulin, A., V. Grechka, and I. Tsvankin (2000a), Estimation of fracture parameters from reflection seismic data - Part I: HTI model due to a single fracture set, Geophysics 65, 6, 1788-1802, DOI: 10.1190/1.1444863.
  • [6] Bakulin, A., V. Grechka, and I. Tsvankin (2000b), Estimation of fracture parameters from reflection seismic data - Part II: Fractured models with orthorhombic symmetry, Geophysics 65, 6, 1803-1817, DOI: 10.1190/1.1444864.
  • [7] Bortfeld, R. (1961), Approximations to the reflection and transmission coefficients of plane longitudinal and transverse waves, Geophys. Prospect. 9, 4, 485-502, DOI: 10.1111/j.1365-2478.1961.tb01670.x.
  • [8] Carcione, J.M. (2007), Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, Elsevier, Amsterdam.
  • [9] Castagna, J.P., H.W. Swan, and D.J. Foster (1998), Framework for AVO gradient and intercept interpretation, Geophysics 63, 3, 948-956, DOI: 10.1190/1.1444406.
  • [10] Chen, W. (1995), AVO in azimuthally anisotropic media fracture detection using P-wave data and a seismic study of naturally fractured tight gas reservoirs, Department of Geophysics, School of Earth Sciences, Stanford University, USA.
  • [11] Cheng, C.H. (1993), Crack models for a transversely isotropic medium, J. Geophys. Res. 98, B1, 675-684, DOI: 10.1029/92JB02118.
  • [12] Crampin, S. (1984), Effective anisotropic elastic constants for wave propagation through cracked solids, Geophys. J. Int. 76, 1, 135-145, DOI: 10.1111/ j.1365-246X.1984.tb05029.x.
  • [13] Crampin, S. (1989), Suggestions for a consistent terminology for seismic anisotropy, Geophys. Prospect. 37, 7, 753-770, DOI: 10.1111/j.1365-2478.1989. tb02232.x.
  • [14] Du, S.T. (1996), Seismic Wave Dynamics, China University of Petroleum Press, Dongying, China (in Chinese).
  • [15] Eshelby, J.D. (1957), The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London A 241, 1226, 376-396, DOI: 10.1098/rspa.1957.0133.
  • [16] Gochioco, L.M. (1991), Tuning effect and interference reflections from thin beds and coal seams, Geophysics 56, 8, 1288-1295, DOI: 10.1190/1.1443151.
  • [17] Hu, Y.R., and G.A. McMechan (2007), Imaging mining hazards within coalbeds using prestack wave equation migration of in-seam seismic survey data: A feasibility study with synthetic data, J. Appl. Geophys. 63, 1, 24-34, DOI: 10.1016/j.jappgeo.2007.03.002.
  • [18] Hudson, J.A. (1980), Overall properties of a cracked solid, Math. Proc. Cambridge Philos. Soc. 88, 2, 371-384, DOI: 10.1017/S0305004100057674.
  • [19] Hudson, J.A. (1981), Wave speeds and attenuation of elastic waves in materials containing cracks, Geophys. J. Int. 64, 1, 133-150, DOI: 10.1111/j.1365-246X.1981.tb02662.x.
  • [20] Komatitsch, D., and J. Tromp (2003), A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophys. J. Int. 154, 1, 146-153, DOI: 10.1046/j.1365-246X.2003.01950.x.
  • [21] Meissner, R., and E. Meixner (1969), Deformation of seismic wavelets by thin layers and layered boundaries, Geophys. Prospect. 17, 1, 1-27, DOI: 10.1111/ j.1365-2478.1969.tb02069.x.
  • [22] Musgrave, M.J.P. (1970), Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals, Holden-Day, San Francisco.
  • [23] Ostrander, W.J. (1984), Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence, Geophysics 49, 10, 1637-1648, DOI: 10.1190/1.1441571.
  • [24] Peng, S.P., H.J. Chen, R.Z. Yang, Y.F. Gao, and X.P. Chen (2006), Factors facilitating or limiting the use of AVO for coal-bed methane, Geophysics 71, 4, C49-C56, DOI: 10.1190/1.2217137.
  • [25] Ramos, A.C.B., and T.L. Davis (1997), 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs, Geophysics 62, 6, 1683-1695, DOI: 10.1190/1.1444268.
  • [26] Rüger, A. (1997), P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry, Geophysics 62, 3, 713-722, DOI: 10.1190/1.1444181.
  • [27] Rutherford, S.R., and R.H. Williams (1989), Amplitude-versus-offset variations in gas sands, Geophysics 54, 6, 680-688, DOI: 10.1190/1.1442696.
  • [28] Shuck, E.L., T.L. Davis, and R.D. Benson (1996), Multicomponent 3-D characterization of a coalbed methane reservoir, Geophysics 61, 2, 315-330, DOI: 10.1190/1.1443961.
  • [29] Shuey, R.T. (1985), A simplification of the Zoeppritz equations, Geophysics 50, 4, 609-614, DOI: 10.1190/1.1441936.
  • [30] Wright, J. (1987), The effects of transverse isotropy on reflection amplitude versus offset, Geophysics 52, 4, 564-567, DOI: 10.1190/1.1442325.
  • [31] Zhang, A.M., Y. Wang, and S.Z. Zhao (1997), Study on the AVO model and AVO character of coal seams with different thickness, J. China Univ. Min. Technol. 26, 3, 36-41 (in Chinese).
  • [32] Zoeppritz, K. (1919), Erdbebenwellen VII B. On the reflection and penetration of seismic waves through unstable layers, Nachr. Gesellsch. Wissensch. Göttingen, Math.-Physik. Kl. 1919, 66-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-886785c3-a043-4a09-b51b-fc7c7fc0260d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.