PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Probabilistic gas transmission network simulator and application to the EU gas transmission system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the methodology approach and the results obtained by the probabilistic gas network simulator ProGasNet software tool. The ProGasNet has been applied to a number of test cases, all based on real gas transmission networks of the EU countries. Various types of analysis have been performed: reliability, vulnerability, security of supply and various types of results have been reported: supply reliability estimates, time-dependent storage discharge effect, quantitative effects of new infrastructure, security of supply under different disruption scenarios. The ProGasNet model provides an indication of the worst networks nodes in terms of security of supply and provides their numerical ranking. The model is very powerful to compare and evaluate different supply options, new network development plans and analyse potential crisis situations
Słowa kluczowe
Rocznik
Strony
71--78
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • European Commission, DG Joint Research Centre Institute for Energy and Transport, Energy Security, Systems and Market Unit, Ispra, Italy
autor
  • European Commission, DG Joint Research Centre Institute for Energy and Transport, Energy Security, Systems and Market Unit, Ispra, Italy
Bibliografia
  • [1] Ball, M. O., Colbourn, C.J. & Provan, J.S. (1992). Network Reliability. University of Maryland, Maryland.
  • [2] Bazaraa, M.S., Jarvis, J.J. & Sherali, H.D. (2010). Linear Programming and Network Flows. John Wiley & Sons, New York.
  • [3] Cakir Erdener, B., Pambour, K.A., Bolado Lavin, R., & Dengiz, B. (2014). An integrated symulation model for analysing electricity and gas system. Electrical Power and Energy Systems, vol. 61, 410-420.
  • [4] Deo, N. (2008). Graph Theory with Applications to Engineering with Computer Science. Prentice Hall.
  • [5] EGIG report, (2011). 8th Report of the European Gas Pipeline Incident Data Group. Groningen.
  • [6] EU Regulation (2010). Regulation No.994/2010 of the European Parliament and of the Council of 20 October 2010 concerning measures to safeguard security of gas supply and repealing Council Directive 2004/67/EC. Official Journal of the European Union, Luxembourg.
  • [7] Hernandez-Fajardo, I. & Duenas-Osorio, L. (2013). Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliab. Eng. and Syst. Saf. vol. 111, 260-272.
  • [8] Johansson, J., Hassel, H. & Zio, E. (2013). Reliability and vulnerability analyses of critical infrastructures: comparing two approaches in the context of power systems. Reliab. Eng. Syst. Saf., vol. 120, 27-38.
  • [9] Kim, Y. & Kang, W.H. (2013). Network reliability analysis of complex systems using a non-simulation-based method. Reliab. Eng. Syst. Saf. vol. 110, 80-88.
  • [10] Kopustinskas, V. & Praks, P. (2012). Development of gas network reliability model, JRC technical report JRC78151, European Commission, Luxembourg.
  • [11] Lewis, A.M., Ward, D., Cyra, L. & Kourti, N. (2013). European Reference Network for Critical Infrastructure Protection. Int. J. Crit. Infrastruct. Protect., vol. 6, 51-60.
  • [12] Lin, Y-K. (2001). A simple algorithm for reliability evaluation of a stochastic-flow network with node failure. Computers and Operations Research, vol. 28, 1277-1285.
  • [13] Ouyang, M. & Dueñas-Osorio, L. (2011). An approach to design interface topologies across interdependent urban infrastructure systems. Reliab. Eng. Syst. Saf., vol. 96, 1462-1473.
  • [14] Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf., vol. 121, 43-60.
  • [15] Praks, P. & Kopustinskas, V. (2014). Development of a gas transmission network reliability model: A case study. Safety, Reliability and Risk Analysis: Beyond the Horizon – Steenbergen et al. (Eds). Taylor & Francis Group, London, pp. 2177-2183.
  • [16] Praks, P., Briš, R., Chudoba, J. & Koucký, M. (2007). Reliability analysis of a natural gas compression station and surrounding gas pipeline network with assuming of performance changes by a dispatcher, in T. Aven, J. E. Vinnem (eds) Risk, Reliability and Societal Safety: Proc. of the European Safety and Reliability conference, Taylor & Francis Group, London, pp. 2323-2330.
  • [17] Rocco, C.M. & Raminez-Marquez, J.E. (2013). Identification of top contributors to system vulnerability via an ordinal optimization based method. Reliab. Eng. Syst. Saf., vol. 114, 92-98.
  • [18] Setola, R., De Porcellinis, S. & Sforna M. (2009). Critical infrastructure dependency assessment using the input–output inoperability model. Int. J. Crit. Infrastruct. Protect., vol. 2 170-178.
  • [19] Trucco, P., Cagno, E., & De Ambroggi, M. (2012). Dynamic functional modelling of vulnerability and interoperability of Critical Infrastructures. Reliab. Eng. Syst. Saf., vol. 105 51-63.
  • [20] Volkanovski, A., Čepin, M. & Mavko, B. (2009). Application of the fault tree analysis for assessment of power system reliability. Reliab. Eng. Syst. Saf., vol. 94, 1116-1127.
  • [21] Wang, S., Hong, L., Ouyang, M., Zhang, J. & Chen, X. (2013). Vulnerability analysis of interdependent infrastructure systems under edge attack strategies. Safety Science, vol. 51, 328-337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-886656dc-cee7-4bf5-a214-7ebb46e65b13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.