PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risk Assessment of Individualized 3D Printed Prostheses Using Failure Mode and Effect Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Risk analysis of personalized medical devices, such as prostheses, is a challenging task due to the complexity of technological and geometrical issues. The paper undertakes a process of risk analysis for upper limb prostheses for adult patients, individualized by 3D scanning and produced by additive manufacturing. The analysis was performed to systematize the process and its steps, as well as diagnose certain problems, in order to achieve future devices with correct fit and function, produced in as few iterations as possible. The Failure Mode and Effect Analysis of Process (PFMEA) method was used. In the results, main process risks were identified: the problems are mostly caused in stages, where operator’s decision or activity is to be performed, regarding socket length, offset and suitable lining. The main prevention activities were determined – human involvement in the decision process should be minimal and the intelligent models should be adjustable to as many patient cases as possible. In consequence, future steps for process optimization were determined – larger base of patient cases is necessary to acquire and study, to gather data for model and process improvement.
Słowa kluczowe
Twórcy
  • Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • 1. Pedretti L. W., Pendleton H. M., Schultz – Krohn W., Pedretti’s Occupational Therapy: Practice Skills for Physical Dysfunction (6th edition.), Mosby/Elsevier 2006.
  • 2. Górski F. et al., Rapid Manufacturing of Individualized Prosthetic Sockets, Advances in Science and Technology Research Journal, 2020; 14(1): 42–49.
  • 3. Pezzin L.E., et al.: Use and satisfaction with prosthetic limb devices and related services. Archives of Physical Medicine and Rehabilitation, 2004, 85, 5, 723–729.
  • 4. Anderson, B.; Schanandore, J.V. Using a 3D-Printed Prosthetic to Improve Participation in a Young Gymnast. Pediatric Physical Therapy 2021, 33(1), 1–6.
  • 5. Barrios-Muriel, J.; Romero-Sánchez, F.; Alonso-Sánchez, F. J.; Rodriguez Salgado, D. Advances in orthotic and prosthetic manufacturing: a technology review. Materials 2020, 13(2), 295, doi: 10.3390/ma13020295.
  • 6. Paterson, A., et al., Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyping Journal, 2015, 21(3), 230–243.
  • 7. Ten Kate J., Smit G., Breedveld P., 3D-printed upper limb prostheses: a review. Disabil Rehabil Assist Technol. 2017; 12(3): 300–314.
  • 8. Huotilainen, E., Jaanimets, R., Valasek, J., Marcian, P., Salmi, M., Tuomi, J., Makitie, A., Wolff, J. (2014), Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process, Journal of Cranio-Maxillo-Facial Surgery, 42, e259-e265, DOI: 10.1016/j.jcms.2013.10.001.
  • 9. Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R., FDM process parameters influence over the mechanical properties of polymer specimens: A review, Polym Test. 2018, 69: 157–166.
  • 10. Kuczko W., Górski F., Wichniarek R., Zawadzki P., Buń P., Strength of ABS parts produced by Fused Deposition Modelling technology – a critical orientation problem, Advances in Science and Technology Research Journal, 2015, 9(26), 112–119.
  • 11. Górski F., Wichniarek, R., Zawadzki P., Wierzbicka, N., Wesołowska, I., Żukowska, M.: Automated Design of Customized 3D-Printed Wrist Orthoses on the Basis of 3D Scanning. In: Okada, H., Satya, N. (Eds.) Computational and Experimental Simulations in Engineering : Proceedings of ICCES 2019, pp. 1133–1143. Atluri: Springer Internation- al Publishing (2020).
  • 12. Cha H.Y., Lee K.H., Ryu H.J., Joo I.W., Seo A., Kim D., Kim S.J., Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software, Hindawi, Republic of Korea 2017.
  • 13. Haleem, A.; Javaid, M. 3D scanning applications in medical field: a literature-based review. Clinical Epidemiology and Global Health 2019, 7(2), 199–210.
  • 14. Cuellar, J.S.; Smit, G.; Zadpoor, A.A.; Breedveld, P. Ten guidelines for the design of non-assembly mechanisms: The case of 3D-printed prosthetic hands. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2018, 232(9), 962–971.
  • 15. Wang, Y.; Tan, Q.; Pu, F.; Boone, D.; Zhang, M. A review of the application of additive manufacturing in prosthetic and orthotic clinics from a biomechanical perspective. Engineering 2020, 6(11), 1258–1266.
  • 16. Ten, K.J.; Smit, G.; Breedveld, P. 3D-printed upper limb prostheses: a review. Disability and Rehabilitation: Assistive Technology 2017, 12(3), 300–314.
  • 17. Cabrera, I.A.; Zheng, Z.; Castillo, P.; Ngo, E.; Troncoso, S.; Zhao, W.Y.; Sheth, N.; Gean, C.; Hsiao, J.; Laxa, J.V.; Martin, J.; Meyers, M.A.; McKittrick, J.M.; Rao, R.R.; Lin, A.Y. Smartphone Telemedicine: A Novel Workflow for Creating Prosthetic Sockets Using Semi-automated Photogrammetry. TechRxiv. Preprint. 2020.
  • 18. Olsen J., Day S., Dupan S., Nazarpour K., Dyson M., 3D-Printing and upper-limb prosthetic sockets; promises and pitfalls, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 525–535.
  • 19. van der Stelt M, Verhamme L, Slump CH, Brouwers L, Maal TJ. Strength testing of low-cost 3D-printed transtibial prosthetic socket. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022; 236(3): 367–375.
  • 20. van der Stelt M., Grobusch M.P., Koroma A.R., Papenburg M., Kebbie I., Slump C.H., Maal T.J.J., Brouwers L., Pioneering low-cost 3D-printed transtibial prosthetics to serve a rural population in Sierra Leone – an observational cohort study, EClinicalMedicine, 35, 2021.
  • 21. AIAG & VDA – Failure Mode and Effects Analysis, FMEA Handbook (1st Edition 2019).
  • 22. FMEA w automotive.
  • 23. Górski F., Wichniarek R., Kuczko W., Żukowska M., Lulkiewicz M. Experimental Studies on 3D Printing of Automatically Designed Customized Wrist-Hand Orthoses, Materials, 2020, 13(18), 4091.
  • 24. Górski F., Wichniarek R., Kuczko W., Żukowska M., Study on Properties of Automatically Designed 3D-Printed Customized Prosthetic Sockets, Materials, 2021, 14(18): 1–26.
  • 25. https://automedprint.put.poznan.pl, access: 10.06.2022
  • 26. BSI Group, Risk management for medical devices and the new BS EN ISO 14971, online: https://www.medical-device-regulation.eu/wp-content/uploads/2020/09/WP_Risk_management_web.pdf, access: 10.06.2022.
  • 27. EN ISO 22523:2006 External limb prostheses and external orthoses – Requirements and test methods (ISO 22523:2006).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88609001-2e1d-4ee2-bdf1-295a47e57fa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.