Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bioleaching is a process that uses microorganisms to remove heavy metals from waste materials, such as fly ash, electronic waste, low-grade ores, mine tailings, and spent catalysts. This study explored indigenous bacteria from contaminated environments to identify promising candidates for heavy metal bioleaching and investigate the underlying mechanisms. The bacteria were identified at the genomic level to determine their species, and bioleaching experiments were conducted to evaluate the effect of pulp density on heavy metal removal from fly ash using two bacterial species. The bioleaching efficiency, bacterial population, and other parameters were measured to analyse the bioleaching mechanisms. The results identified the bacterial isolates as Bacillus toyonensis and Bacillus tropicus. The addition of 5% (w/v) fly ash yielded the highest bioleaching efficiency for copper, zinc, chromium, and nickel. Among the two, Bacillus toyonensis showed the highest efficiency, with 63.62% for copper, 79.38% for zinc, 60.42% for chromium, and 52.26% for nickel. The bioleaching process occurred in an alkaline medium, with the pH shifting from neutral to alkaline during the experiment. In conclusion, the two Bacillus species effectively bioleached heavy metals from fly ash through biosorption, complexolysis, and redoxolysis mechanisms, similar to those found in other heterotrophic and autotrophic bacteria. However, it is important to note that bioleaching in this study took place in an alkaline medium, excluding acidolysis and complexolysis mechanisms that involve organic acids.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
83--97
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
- Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia
- Faculty of Infrastructure and Regional Technology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu Way Hui, South Lampung, Indonesia
autor
- Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia
autor
- Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia
Bibliografia
- 1. Abanto, M., Pariona, N., Calderon, J., Guerra, G., Ramirez, R., Delacruz-Calvo, F., and Ramirez, P. (2013). Molecular Identification of Iron Oxidizing Bacteria Isolated from Acid Mine Drainages in Peru. Advanced Materials Research, 825, 84–87. https://doi.org/10.4028/www.scientific.net/AMR.825.84
- 2. Barkusaraey, F. H., Mafigholami, R., Ghasemi, M. F., & Khayati, G. (2021). Zn bio extraction from a zinc rich paint sludge by indigenous Pseudomonas aeruginosa. Chemical Engineering Communications, 209(10), 1397–1412. https://doi.org/10.1080/00986445.2021.1974410
- 3. Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews 20, 20, 591–604. https://academic.oup.com/femsre/article-pdf/20/3-4/591/18124215/20-3-4-591.pdf
- 4. Budianti, T., Sugiarso K. S., R. D., & Suprapto, S. (2017). Analisis perbandingan pengaruh campuran ION Cu2+ dan Ni2+ pada penentuan kadar Fe sebagai Fe(II)-Fenantrolin. Jurnal Sains Dan Seni ITS, 6(2), 2–7. https://doi.org/10.12962/j23373520.v6i2.27571
- 5. Cappuccino, J. G., & Welsh, C. T. (2019). Microbiology: A Laboratory Manual. In Pearson Education (12th ed.). Pearson Education. www.pearson.com
- 6. Chaerun, S. K., Putri, F. Y., Minwal, W. P., Ichlas, Z. T., & Mubarok, M. Z. (2018). Bacterial leaching of an indonesian complex copper sulfide ore using an iron-oxidizing indigenous bacterium. Microbiology Indonesia, 12(1), 1–6. https://doi.org/10.5454/mi.12.1.1
- 7. Chen, W., & Kuo, T. (1993). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Research, 21(9), 2260. https://doi.org/10.1093/nar/21.9.2260
- 8. Chen, Z., Huang, X. Y., He, H., Tang, J. L., Tao, X. X., Huang, H. Z., Haider, R., Ali, M. I., Jamal, A., & Huang, Z. (2021). Bioleaching coal gangue with a mixed culture of acidithioba-cillus ferrooxidans and acidithiobacillus thiooxidans. Minerals, 11(10). https://doi.org/10.3390/min11101043
- 9. Chettri, B., Singha, N. A., Mukherjee, A., Rai, A. N., Chattopadhyay, D., & Singh, A. K. (2019). Hydrocarbon degradation potential and competitive persistence of hydrocarbonoclastic bacterium Acinetobacter pittii strain ABC. Archives of Microbiology, 201(8), 1129–1140. https://doi.org/10.1007/s00203-019-01687-z
- 10. Das, S. K., Dan, A. K., Behera, U., Tripathi, A. K., Behari, M., Das, D., & Parhi, P. K. (2021). A novel approach on leaching study for removal of toxic elements from thermal power plant-based fly ash using natural bio-surfactant. Case Studies in Chemical and Environmental Engineering, 4(October), 100156. https://doi.org/10.1016/j.cscee.2021.100156
- 11. Dev, S., Sachan, A., Dehghani, F., Ghosh, T., Briggs, B. R., & Aggarwal, S. (2020). Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chemical Engineering Journal, 397(February), 124596. https://doi.org/10.1016/j.cej.2020.124596
- 12. Du Nouy, P. L. (1925). An interficial tensiometer for universal use. The Journal of General Physiology, 7, 625–632. https://pmc.ncbi.nlm.nih.gov/articles/PMC2140742/
- 13. EPA, U. (1992). Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy. In EPA. https://r.search.yahoo.com/_ylt=AwrKDysGEvpm9LwUYzXLQwx.;_y l u = Y 2 9 s b w N z Z z M E c G 9 z A z I E d n R p Z A M E c 2 V j A 3 N y / RV = 2 / R E = 1 7 2 7 6 9 3 4 4 7 /RO=10/RU=https%3A%2F%2Fwww.epa.go v%2Fsites%2Fproduction%2Ffiles%2F2015-1 2 % 2 F d o c u m e n t s % 2 F 3 0 0 5 a . p d f / R K = 2 /RS=YdG8bj5GYNUDKUNzeK.qPUg6ZM0-
- 14. Ertit Taştan, B. (2017). Clean up fly ash from coal burning plants by new isolated fungi Fusarium oxysporum and Penicillium glabrum. Journal of Environmental Management, 200, 46–52. https://doi.org/10.1016/j.jenvman.2017.05.062
- 15. Etemadifar, Z., Etemadzadeh, S. S., & Emtiazi, G. (2018). A novel approach for bioleaching of sulfur, iron, and silica impurities from coal by growing and resting cells of Rhodococcus spp. Geomicrobiology Journal, 36(2), 123–129. https://doi.org/10.1080/01490451.2018.1514441
- 16. Fajriani, B., Budiharjo, A., & Pujiyanto, S. (2018). Isolasi dan identifikasi molekuler bakteri antagonis terhadap vibrio parahaemolyticus patogen pada udang litopenaeus vannamei dari produk probiotik dan sedimen mangrove di rembang. Jurnal Biologi, 7(1), 52–63. https://ejournal3.undip.ac.id/index.php/biologi/article/view/19626
- 17. Fathollahi, A., Khasteganan, N., Coupe, S. J., & Newman, A. P. (2021). A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere, 268, 129290. https://doi.org/10.1016/j.chemosphere.2020.129290
- 18. Guo, Y., Teng, Q., Yang, Z., Sun, B., & Liu, S. (2021). Investigation on bio-desilication process of fly ash based on a self-screened strain of Bacillus amyloliquefaciens and its metabolites. Journal of Biotechnology, 341(August), 146–154. https://doi.org/10.1016/j.jbiotec.2021.09.016
- 19. Joulian, C., Fonti, V., Chapron, S., Bryan, C. G., & Guezennec, A. G. (2020). Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Research in Microbiology, 171(7), 260–270. https://doi.org/10.1016/j.resmic.2020.08.002
- 20. Khan, I., & Umar, R. (2018). Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India. Groundwater for Sustainable Development, 8, 346–357. https://doi.org/10.1016/j.gsd.2018.12.002
- 21. Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104(2), 222–234. https://doi.org/10.1016/j.hydromet.2010.06.010
- 22. Li, B., Pan, D., Zheng, J., Cheng, Y., Ma, X., Huang, F., & Lin, Z. (2008). Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir, 24(17), 9630–9635. https://doi.org/10.1021/la801851h
- 23. Lisafitri, Y., & Kardena, E. (2023). Progress and challenges of biological leaching of heavy metal in coal ash from a power plant. Journal of Engineering and Technological Sciences, 55(1), 79–90. https://doi.org/10.5614/j.eng.technol.sci.2023.55.1.8
- 24. Lisafitri, Y., Kardena, E., & Helmy, Q. (2024). Potential, isolation, and characterization of bacteria isolates from a coal ash dumpsite for recovery of nickel from coal fly ash. E3S Web of Conferences, 485. https://doi.org/10.1051/e3sconf/202448505001
- 25. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Marchesi JR 1998 Primer für 16S rRNA.pdf. Applied and Environmental Microbiology, 64(2), 795–799. https://doi.org/10.1128/AEM.64.2.795-799.1998
- 26. Mathew, B. B., & Krishnamurthy, N. B. (2018). Screening and identification of bacteria isolated from industrial area groundwater to study lead sorption: Kinetics and statistical optimization of biosorption parameters. Groundwater for Sustainable Development, 7, 313–327. https://doi.org/10.1016/j.gsd.2018.07.007
- 27. Mekkadinah, Suwarno, S., Garniwa, I., & Agustina, H. (2020). Review regulation on the determination of fly ash and bottom ash from coal fired power plant as hazardous waste in effort to increase utilization in Indonesia. IOP Conference Series: Earth and Environmental Science, 519(1). https://doi.org/10.1088/1755-1315/519/1/012051
- 28. Minucelli, T., Ribeiro-Viana, R. M., Borsato, D., Andrade, G., Cely, M. V. T., de Oliveira, M. R., Baldo, C., & Celligoi, M. A. P. C. (2017). Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in soil bioremediation. Waste and Biomass Valorization, 8(3), 743–753. https://doi.org/10.1007/s12649-016-9592-3
- 29. Moeini, F., Doudi, M., Karvani, Z. E., & Fouladgar, M. (2022). Lead biosorption and biosynthesis of lead nanoparticles by bacillus tropicus isolated from soils containing electronic wastes in isfahan fateme. Biology Journal of Microorganism, Year 11(43). https://doi.org/10.22108/BJM.2022.131079.1423
- 30. Muksy, R., Kolo, K., & Abdullah, S. M. (2023). Bacterial and Fungal-Mineral Interactions and Their Application in Bioremediation – A Review. Journal of Ecological Engineering, 24(5), 1–13. https://doi.org/10.12911/22998993/157567
- 31. Oves, M., Khan, M. S., & Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20(2), 121–129. https://doi.org/10.1016/j.sjbs.2012.11.006
- 32. Pangayao, D. C. (2016). Bioleaching of trace metals from coal ash using Acidithiobacillus albertensis, Acidithiobacillus thiooxidans and local isolate from coal ash pond [Gokongwei College of Engineering]. https://animorepository.dlsu.edu.ph/etd_doctoral/501
- 33. Pangayao, D., Gallardo, S., Promentilla, M. A., & van Hullebusch, E. (2018). Bioleaching of trace metals from coal ash using local isolate from coal ash ponds. MATEC Web of Conferences, 156, 03031. https://doi.org/10.1051/matecconf/201815603031
- 34. Pangayao, D., Promentilla, M. A., Gallardo, S., & van Hullebusch, E. (2019). Bioleaching kinetics of trace metals from coal ash using Pseudomonas spp. MATEC Web of Conferences, 268, 01010. https://doi.org/10.1051/matecconf/201926801010
- 35. Parhusip, A. J. N., Xaveria, J., & Irawati, W. (2020). Peranan konsorsium isolat bakteri resisten logam berat untuk menurunkan kandungan Zn, Fe, dan Mg pada cumi, udang, dan ikan. Jurnal Teknologi Lingkungan, 21(1), 79–85. https://doi.org/10.29122/jtl.v21i1.3556
- 36. Park, S., & Liang, Y. (2019). Bioleaching of trace elements and rare earth elements from coal fly ash. International Journal of Coal Science and Technology, 6(1), 74–83. https://doi.org/10.1007/s40789-019-0238-5
- 37. Pereira, P. P., Torres Tejerizo, G. A., Fernandez, M., Blanch, A. R., Gonzalez, P. S., & Agostini, E. (2020). Polyphasic characterization and identification of the bioremediation agent Bacillus sp. SFC 500-1E. Genomics, 112(6), 4525–4535. https://doi.org/10.1016/j.ygeno.2020.08.008
- 38. Puspitasari, D., Pramono, H., & Oedjijono, O. (2014). Identifikasi bakteri pengoksidasi besi dan sulfur berdasarkan gen 16s rrna dari lahan tambang timah di belitung. Scripta Biologica, 1(1), 10. https://doi.org/10.20884/1.sb.2014.1.1.12
- 39. Ristović, I., Štyriaková, D., Štyriaková, I., Šuba, J., & Širadović, E. (2022). Bioleaching process for copper extraction from waste in alkaline and acid medium. Minerals, 12(1), 100. https://doi.org/10.3390/min12010100
- 40. Rodriguez, J., Stopić, S., Krause, G., & Friedrich, B. (2007). Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment. In Environmental Science and Pollution Research, 14(7). https://doi.org/10.1065/espr2007.05.424
- 41. Said, M. S., Nurhawaisyah, S. R., Juradi, M. I., Asmiani, N., & Kusuma, G. J. (2020). Analisis kandungan fly ash sebagai alternatif bahan penetral dalam penanggulangan air asam tambang. Jurnal Geomine, 7(3), 170. https://doi.org/10.33536/jg.v7i3.479
- 42. Sandhu, M., Paul, A. T., Proćków, J., de la Lastra, J. M. P., & Jha, P. N. (2022). PCB-77 biodegradation potential of biosurfactant producing bacterial isolates recovered from contaminated soil. Frontiers in Microbiology, 13(September), 1–18. https://doi.org/10.3389/fmicb.2022.952374
- 43. Savic, D., Nisic, D., Malic, N., Dragosavljevic, Z., & Medenica, D. (2018). Research on power plant ash impact on the quality of soil in kostolac and gacko coal basins. Minerals, 8(2), 54. https://doi.org/10.3390/min8020054
- 44. Seidel, A., Zimmels, Y., & Armon, R. (2001). Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chemical Engineering Journal, 83(2), 123–130. https://doi.org/10.1016/S1385-8947(00)00256-4
- 45. Sharada, H. M., Abdel-halim, S. A., & Hafez, M. A. (2021). Bioleaching of copper from electronic waste using Aspergillus niger. Biointerface Research in Applied Chemistry, 12(6), 8406–8425. https://doi.org/10.33263/BRIAC126.84068425
- 46. Shetty, N., Shetty, J. K., Chadaga, D. M., & Shankara H N, D. U. (2021). Trace analysis of heavy metals in ground water and soil near coal based thermal power plant udupi karnataka. Journal of University of Shanghai for Science and Technology, 23(2), 382–395. https://doi.org/10.51201/jusst12608
- 47. Shi, X.-Z., Guo, R.-J., Takagi, K., Miao, Z.-Q., & Li, S.-D. (2011). Chlorothalonil degradation by Ochrobactrum lupini strain TP-D1 and identification of its metabolites. World Journal of Microbiology and Biotechnology, 27(8), 1755–1764. https://doi.org/10.1007/s11274-010-0631-0
- 48. Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans. Journal of Bacteriology, 77(5), 642–647. https://doi.org/10.1128/jb.77.5.642-647.1959
- 49. Solikha, D. (2018). Analisis kadar Fe2+ dari suatu sampel limbah laboratorium x di Kota Bandung menggunakan spektrofotometri uvvis jenis spectronik-20. Jurnal Ilmiah Indonesia, 3(8), 13–26. https://media.neliti.com/media/publications/330484-analisis-kadar-fe2-dari-suatu-sampel-lim-a09cc46f.pdf
- 50. Su, H., Chen, H., & Lin, J. (2020). A sequential integration approach using Aspergillus Niger to intensify coal fly ash as a rare metal pool. Fuel, 270(November 2019), 117460. https://doi.org/10.1016/j.fuel.2020.117460
- 51. Su, H., Tan, F., & Lin, J. (2020). An integrated approach combines hydrothermal chemical and biological treatment to enhance recycle of rare metals from coal fly ash. Chemical Engineering Journal, 395(February), 124640. https://doi.org/10.1016/j.cej.2020.124640
- 52. Tabak, H. H., Lens, P., Van Hullebusch, E. D., & Dejonghe, W. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides - 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Reviews in Environmental Science and Biotechnology, 4(3), 115–156. https://doi.org/10.1007/s11157-005-2169-4
- 53. Tallon, R., Bressollier, P., & Urdaci, M. C. (2003). Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Research in Microbiology, 154(10), 705–712. https://doi.org/10.1016/j.resmic.2003.09.006
- 54. Taştan, B. E., Ertuğrul, S., & Dönmez, G. (2010). Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresource Technology, 101(3), 870–876. https://doi.org/10.1016/j.biortech.2009.08.099
- 55. Verma, C., Madan, S., & Hussain, A. (2016). Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India. Cogent Engineering, 3(1). https://doi.org/10.1080/23311916.2016.1179243
- 56. Wang, X., Sun, Z., Liu, Y., Min, X., Guo, Y., Li, P., & Zheng, Z. (2019). Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresource Technology, 281(December 2018), 66–71. https://doi.org/10.1016/j.biortech.2019.02.065
- 57. Wiyono, M., & Wahyudi, W. (2018). Analisis unsur dalam fly ash dari industri {PLTU} batubara dengan metode analisis aktivasi neutron. Jurnal Teknologi Lingkungan, 19(2), 221–228. https://doi.org/10.29122/jtl.v19i2.2778
- 58. Yacub, M. R. F., & Suliestyah, S. (2020). Uji Karakterisasi fly ash sebagai campuran material non-acid forming (NAF). Indonesian Mining and Energy, 3(2), 89–96. https://www.trijurnal.lemlit.trisakti.ac.id/imej/article/view/9191
- 59. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121. https://doi.org/10.1016/j.earscirev.2014.11.016
- 60. Zeng, L., Huang, J., Zhang, Y., Qiu, G., Tong, J., Chen, D., Zhou, J., & Luo, X. (2008). An effective method of DNA extraction for bioleaching bacteria from acid mine drainage. Applied Microbiology and Biotechnology, 79(5), 881–888. https://doi.org/10.1007/s00253-008-1491-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-885fd623-67d2-4bb8-a799-148091f02642
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.