Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to introduce an iterative algorithm for approximating the solution of the split equality monotone variational inclusion problem (SEMVIP) for monotone operators, which is also a solution of the split equality fixed point problem (SEFPP) for strictly pseudocontractive maps in real Hilbert spaces.We establish the strong convergence of the sequence generated by our iterative algorithm. Our result complements and extends some related results in literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
187--204
Opis fizyczny
Bibliogr. 50 poz., wykr.
Twórcy
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
- [1] G. L. Acedo and H.-K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), no. 7, 2258-2271.
- [2] T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math. 41 (2022), no. 1, Paper No. 39.
- [3] T. O. Alakoya, A. O. E. Owolabi and O. T. Mewomo, An inertial algorithm with a self-adaptive step size for a split equilibrium problem and a fixed point problem of an infinite family of strict pseudo-contractions, J. Nonlinear Var. Anal. 5 (2021), 803-829.
- [4] T. O. Alakoya, A. O. E. Owolabi and O. T. Mewomo, Inertial algorithm for solving split mixed equilibrium and fixed point problems for hybrid-type multivalued mappings with no prior knowledge of operator norm, J. Nonlinear Convex Anal., to appear.
- [5] T. O. Alakoya, A. Taiwo, O. T. Mewomo and Y. J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat. 67 (2021), no. 1, 1-31.
- [6] J. B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), no. 1, 1-9.
- [7] J.-B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones, Israel J. Math. 26 (1977), no. 2, 137-150.
- [8] H. Breziz, Operateur Maximaux Monotones, Math. Stud. 5, North-Holland, Amsterdam, 1973.
- [9] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
- [10] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), no. 4, 459-470.
- [11] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18 (2002), no. 2, 441-453.
- [12] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 20 (2004), no. 1, 103-120.
- [13] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), no. 4, 759-775.
- [14] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353-2365.
- [15] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), no. 2-4, 221-239.
- [16] P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys. 95 (1996), 155-453.
- [17] G. Crombez, A geometrical look at iterative methods for operators with fixed points, Numer. Funct. Anal. Optim. 26 (2005), no. 2, 157-175.
- [18] G. Crombez, A hierarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim. 27 (2006), no. 3-4, 259-277.
- [19] E. C. Godwin, C. Izuchukwu and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital. 14 (2021), no. 2, 379-401.
- [20] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monogr. Textb. Pure Appl. Math. 83, Marcel Dekker, New York, 1984.
- [21] H. Guo, H. He and R. Chen, Strong convergence theorems for the split equality variational inclusion problem and fixed point problem in Hilbert spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 223.
- [22] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comput. Appl. Math. 236 (2012), no. 7, 1733-1742.
- [23] C. Izuchukwu, F. U. Ogbuisi and O. T. Mewomo, A common solution of split equality monotone inclusion problem and split equality fixed point problem in real Banach spaces, Adv. Oper. Theory 6 (2021), no. 1, Paper No. 11.
- [24] C. Izuchukwu, G. N. Ogwo and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization 71 (2022), no. 3, 583-611.
- [25] L. O. Jolaoso, F. U. Ogbuisi, O. K. Oyewole, O. T. Mewomo and P. Cholamjiak, A simultaneous scheme for solving systems of inclusion and equilibrium problems in a real Banach space, Thai J. Math. 19 (2021), no. 2, 665-684.
- [26] L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math. 52 (2019), no. 1, 183-203.
- [27] K. R. Kazmi and S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett. 8 (2014), no. 3, 1113-1124.
- [28] S. H. Khan, T. O. Alakoya and O. T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces, Math. Comput. Appl. 25 (2020), no. 3, Paper No. 54.
- [29] B. Lemaire, Which fixed point does the iteration method select?, in: Recent Advances in Optimization (Trier 1996), Lecture Notes in Econom. and Math. Systems 452, Springer, Berlin (1997), 154-167.
- [30] G. Marino and H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336-346.
- [31] O. T. Mewomo and F. U. Ogbuisi, Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces, Quaest. Math. 41 (2018), no. 1, 129-148.
- [32] A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems 26 (2010), no. 5, Article ID 055007.
- [33] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), no. 2, 275-283.
- [34] F. U. Ogbuisi and O. T. Mewomo, Iterative solution of split variational inclusion problem in a real Banach spaces, Afr. Mat. 28 (2017), no. 1-2, 295-309.
- [35] F. U. Ogbuisi and O. T. Mewomo, On split generalised mixed equilibrium problems and fixed-point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl. 19 (2017), no. 3, 2109-2128.
- [36] F. U. Ogbuisi and O. T. Mewomo, Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory 19 (2018), no. 1, 335-358.
- [37] F. U. Ogbuisi and O. T. Mewomo, Solving split monotone variational inclusion problem and fixed point problem for certain multivalued maps in Hilbert spaces, Thai J. Math. 19 (2021), no. 2, 503-520.
- [38] G. N. Ogwo, T. O. Alakoya and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization (2021), DOI 10.1080/02331934.2021.1981897.
- [39] G. N. Ogwo, T. O. Alakoya and O. T. Mewomo, Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces, Demonstr. Math. 55 (2022), no. 1, 193-216.
- [40] G. N. Ogwo, C. Izuchukwu, Y. Shehu and O. T. Mewomo, Convergence of relaxed inertial subgradient extragradient methods for quasimonotone variational inequality problems, J. Sci. Comput. 90 (2022), no. 1, Paper No. 10.
- [41] C. C. Okeke and O. T. Mewomo, On split equilibrium problem, variational inequality problem and fixed point problem for multi-valued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017), no. 2, 223-248.
- [42] M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi and O. T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear Funct. Anal. 2021 (2021), Article ID 10.
- [43] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274-276.
- [44] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292.
- [45] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
- [46] Y. Shehu and F. U. Ogbuisi, An iterative method for solving split monotone variational inclusion and fixed point problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110 (2016), no. 2, 503-518.
- [47] A. Taiwo, T. O. Alakoya and O. T. Mewomo, Strong convergence theorem for fixed points of relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Asian-Eur. J. Math. 14 (2021), no. 8, Paper No. 2150137.
- [48] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces, J. Ind. Manag. Optim. 17 (2021), no. 5, 2733-2759.
- [49] H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. (2) 66 (2002), no. 1, 240-256.
- [50] H. Zhou, Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008), no. 2, 456-462.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-885d6f6c-49c1-44ab-a25e-bbc4c79f98e5