Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show that a function is real analytic at the origin iff it is arc-analytic, has a subanalytic graph, and its restriction to every monomial curve is analytic. This complements recent results of Kucharz and Kurdyka.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
53--64
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Department of Mathematics Princeton, University Princeton, NJ 08544-1000, USA
Bibliografia
- [1] [AMRT75] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, MA, 1975.
- [2] [BKK20] J. Bochnak, J. Kollár, and W. Kucharz, Checking real analyticity on surfaces, J. Math. Pures Appl. (9) 133 (2020), 167-171.
- [3] [BM88] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42.
- [4] [BM90] E. Bierstone and P. D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411-424.
- [5] [BM97] E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.
- [6] [BM06] E. Bierstone and P. D. Milman, Desingularization of toric and binomial varieties, J. Algebraic Geom. 15 (2006), 443-486.
- [7] [BMP91] E. Bierstone, P. D. Milman, and A. Parusiński, A function which is arc-analytic but not continuous, Proc. Amer. Math. Soc. 113 (1991), 419-423.
- [8] [BS71] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, mimeographed preprint, IHES, 1971.
- [9] [BS19] J. Bochnak and J. Siciak, A characterization of analytic functions of several real variables, Ann. Polon. Math. 123 (2019), 9-13.
- [10] [Cox00] D. A. Cox, Toric varieties and toric resolutions, in: Resolution of Singularities (Obergurgl, 1997), Progr. Math. 181, Birkhäuser, Basel, 2000, 259-284.
- [11] [EG72] P. Erdős and R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arith. 21 (1972), 399-408.
- [12] [EV98] S. Encinas and O. Villamayor, Good points and constructive resolution of singularities, Acta Math. 181 (1998), 109-158.
- [13] [GPT02] P. D. González Pérez and B. Teissier, Embedded resolutions of non necessarily normal affine toric varieties, C. R. Math. Acad. Sci. Paris 334 (2002), 379-382.
- [14] [Ha1906] F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1-88.
- [15] [Hir64] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964), 205-326.
- [16] [Hir73a] H. Hironaka, Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli” dell’Università di Pisa, Pisa, 1973.
- [17] [Hir73b] H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 453-493.
- [18] [KK+73] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings. I, Lecture Notes in Math. 339, Springer, Berlin, 1973.
- [19] [Kol07] J. Kollár, Lectures on Resolution of Singularities, Ann. of Math. Stud. 166, Princeton Univ. Press, Princeton, NJ, 2007.
- [20] [Kol19] J. Kollár, Partial resolution by toroidal blow-ups, Tunis. J. Math. 1 (2019), 3-12.
- [21] [KK23] W. Kucharz and K. Kurdyka, Analytic functions and Nash functions along curves, Selecta Math. 29 (2023), art. 16, 12 pp.
- [22] [Kur88] K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462.
- [23] [Kur91] K. Kurdyka, A counterexample to subanalyticity of an arc-analytic function, in: Proc. Tenth Conference on Analytic Functions (Szczyrk, 1990), Ann. Polon. Math. 55 (1991), 241-243.
- [24] [Kur94] K. Kurdyka, An arc-analytic function with nondiscrete singular set, Ann. Polon. Math. 59 (1994), 251-254.
- [25] [Laz04] R. Lazarsfeld, Positivity in Algebraic Geometry. I-II, Ergeb. Math. Grenzgeb. (3) 48-49, Springer, Berlin, 2004.
- [26] [LJT08] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et équisingularité (avec un appendice de J.-J. Risler), Ann. Fac. Sci. Toulouse Math. (6) 17 (2008), 781-859.
- [27] [SH06] I. Swanson and C. Huneke, Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Ser. 336, Cambridge Univ. Press, 2006.
- [28] [Tev07] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), 1087-1104.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-885b3c21-740b-4e0c-ad6c-80ad70206053