PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of transient elastohydrodynamic lubrication subjected to sinusoidal dynamic loads for rough contact surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the behaviour of transient elastohydrodynamic contacts subjected to forced harmonic vibrations, including the effect of surface waviness for concentrated counterformal point contact under isothermal conditions. Profiles of pressure and film thickness are studied to reveal the combined effects of sinusoidal external load and surface roughness on the lubrication problem. The time-dependent Reynolds' equation is solved using Newton–Raphson technique. The film thickness and pressure distribution are obtained at different snap shots of time by simultaneous solution of the Reynolds’ equation and film thickness equation including elastic deformation and surface waviness. It is concluded that the coupling effects of the transient sinusoidal external load and wavy surface would result in increase in modulations of the pressure and film thickness profile in comparison to the case where the smooth contact surfaces are subjected to sinusoidal external load.
Rocznik
Strony
162--168
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
  • Mechanical Design & Production Department, Military Technical College, Ismail Al Fangari, El-Qobba Bridge, El Weili, Cairo, Egypt
Bibliografia
  • 1. Gohar R, Rahnejat H. Fundamentals of tribology. Imperial College Press, London; 2008.
  • 2. Simon V. Optimal tooth modifications in face-hobbed spiral bevel gears to reduce the influence of misalignments on elastohydro-dynamic lubrication. ASME J Mech. Des. 2014; 136(7):1-9.
  • 3. Simon V. Improvements in the mixed elastohydrodynamic lubrication and in the efficiency of hypoid gears. Proceeding of the IMechE, Part J: Journal of Engineering Tribology. 2019; 324(6):795-810.
  • 4. Wijnant YH, Venner CH, Larsson R, Ericsson P. Effects of structural vibrations on the film thickness in an EHL circular contact. Trans. ASME, J. Trib. 1999; 121(2):259-264.
  • 5. Kilali TEl, Perret-Liaudet J., Mazuyer D. Experimental analysis of a high pressure lubricated contact under dynamic normal excitation force. Trans. Proc. Trib., Proc. Of the 30thLeeds-Lyon Symp. on Tribology. 2004:409-418.
  • 6. Sakamoto M, Nishikawa H, Kaneta M. Behavikaor of Point Contact EHL Films Under Pulsating Loads. Trans. Proc. Trib., Proc. Of the 30thLeeds-Lyon Symp. on Tribology. 2004:391-399.
  • 7. Kalogiannis K, Mares C, Glovnea RP, Ioannides E. Experimental investigation into the Response of Elastohydrodynamic Films to Harmonic Vibrations. International Journal of Mechatronics and Manufacturing Systems. 2011; 4(1):61-73.
  • 8. Zhang X, Glovnea RP. The Behaviour of Lubricated EHD Contacts Subjected to Vibrations. IOP Conf. Ser.; Mater. Sci. Eng. 2017;174.
  • 9. Glovnea RP, Zhang X, Sugimura J. The Effect of Lubricant Supply and Frequency upon the Behaviour of EHD Films Subjected to Vibrations. IOP Conf. Ser.; Mater. Sci. Eng. 2017;174.
  • 10. Glovnea RP, Zhang X. Elastohydrodynamic Films under Periodic Load Variation: An Experimental and Theoretical Approach. Tribology Letters. 2018; 66(3):1-11.
  • 11. Yang P, Cui J, Jin JM, Dowson D. A theoretical study on the response of a point elastohydrodynamic lubrication contact to a normal harmonic vibration under thermal and non-Newtonian conditions. Proc. IMechE, Part C. 2007; 221(9):1089-1110.
  • 12. Morales-Espejel GE. Central film thickness in time-varying normal approach of rolling elastohydrodynamically lubricated contacts. Proc. IMechE, Part C. 2008; 222(7):1271-1280.
  • 13. Felix-Quinonez A, Morales-Espejel GE. Film thickness fluctuations in time-varing normal loading of rolling elastohydrodynamically lubricated contacts. Proc. IMechE, Part C. 2010; 224(12): 2559-2567.
  • 14. Al-Samieh MF. Numerical investigation of Elastohydrodynamic contacts subjected to harmonic load variation. Industrial Lubrication and Tribology. 2019; 71(6):832-841.
  • 15. Venner CH, Lubrecht AA. Numerical simulation of a transverse ridge in a circular EHL contact, under rolling/sliding. Trans. ASME, J.Tribology. 1994; 116(4):751-761.
  • 16. Holmes MJA, Evans HP, Hughes TG, Snidle RW. Transienelasto-hydrodynamic point contact analysis using a new coupled differential deflection method Part 1: Theory and validation. Proceeding of the IMechE, Part J: Journal of Engineering Tribology. 2003; 217(4): 289-303.
  • 17. Glovnea RP, Choo JW, Olver AV, Spikes HA. Compression of a single transverse ridge in a circular elastohydrodynamic contact. ASME Journal of Tribology. 2003; 125(2):275-282.
  • 18. Armando FQ, Pascal E, Jonathan LS. New experimental results of a single ridge passing through an EHL conjunction. ASME Journal of Tribology. 2003; 125(2):252-259.
  • 19. Felix-Quinonez A, Ehret P, Summers JL. Numerical analysis of experimental observations of a single transverse ridge passing through an elastohydrodynamic lubrication point contact under rolling/sliding conditions. Proceeding of the IMechE, Part J:Journal of Engineering Tribology. 2004; 218(2):109-123.
  • 20. Felix-Quinonez A, Ehret P, Summers JL, Morales-Espejel GE. Fourier analysis of a single transverse ridge passing through an elastohydrodynamically lubricated rolling contact: a comparison with experiment. Proceeding of the IMechE, Part J: Journal of Engineering Tribology. 2004; 218(1):33-43.
  • 21. Ildiko F, Sperka P, Hartl M. Transient calculations in elastohydro-dynamically lubricated point contacts. Engineering Mechanics. 2014; 21(5):311–319.
  • 22. Sperka P., Krupka I. and Hartl M. Rapid prediction of roughness effects in sliding EHL contacts. STLE Annual Meeting & Exhibition, Michigan, USA. 2013; May 5-9.
  • 23. Sperka P, Krupka I, Hartl M. Prediction of Shallow Indentation Effects in a Rolling-Sliding EHL Contact Based on Amplitude Attenuation Theory. Japanese Society of Tribologists. 2017; 12(1):1-7.
  • 24. Al-Samieh MF. Effect of changing geometrical characteristics for different shapes of a single ridge passing through elastohydro-dynamic of point contacts. Industrial Lubrication and Tribology. 2021; 73(2):283-296.
  • 25. Cupu DRP, Stratmann A, Jacobs G. Analysis of transient elasto-hydrodynamic lubrication of point contact subjected to sinusoidal dynamic loads. International Conference on Design, Energy, Materials and Manufacture, IOP Conf. Series: Materials Science and Engineering 539. 2019.
  • 26. Al-Samieh MF. Theoretical Investigation of Transient Ultra-Thin Lubricant Film during rapid deceleration. Tribology in industry. 2018; 40(3): 349-357.
  • 27. Johnson KL. Contact mechanics. Cambridge University Press. 1985; Chapter 3: 54.
  • 28. Dowson D, Higginson GR. A numerical solution to the elastohydro-dynamic problem. J. Mech. Engng. Sci. 1959; 1(1):6-15.
  • 29. Roelands CJA. Correlation aspects of viscosity-temperature-pressure relationship of lubricating oils. PhD thesis. Delft University of Technology, The Netherlands. 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88562551-f873-4d12-8e6e-1ae6a5eb575f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.