Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A toy model of earthquakes - Random Domino Automaton - is investigated in its finite version. A procedure of reconstruction of intrinsic dynamical parameters of the model from produced statistics of avalanches is presented. Examples of exponential, inverse-power and M-shape distributions of avalanches illustrate remarkable flexibility of the model as well as the efficiency of proposed reconstruction procedure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1677--1689
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
- 1. Barbot, S., N. Lapusta, and J.-P. Avouac (2012), Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle, Science 336,6082, 707-710, DOI: 10.1126/science.1218796.
- 2. Bhattacharyya, P., and B.K. Chakrabarti (eds.) (2006), Modelling Critical and Catastrophic Phenomena in Geoscience, Lecture Notes in Physics, vol. 705, Springer, Berlin.
- 3. Białecki, M. (2012a), An explanation of the shape of the universal curve of the Scaling Law for the Earthquake Recurrence Time Distributions, arXiv:1210.7142 [physics.geo-ph].
- 4. Białecki, M. (2012b), Finite Random Domino Automaton, arXiv:1208.5886 [nlin.CG].
- 5. Białecki, M. (2012c), Motzkin numbers out of Random Domino Automaton, Phys. Lett. A 376,45, 3098-3100, DOI: 10.1016/j.physleta.2012.09.022.
- 6. Białecki, M., and Z. Czechowski (2010), On a simple stochastic cellular automaton with avalanches: simulation and analytical results. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet - Earth and Planetary Sciences, Vol. 1, Springer, Berlin Heidelberg, 63-75, DOI: 10.1007/978-3-642-12300-9_5.
- 7. Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: exponential and inverse-power distributions out of Random Domino Automaton, J. Phys. Soc. Jpn. 82,1, 014003, DOI: 10.7566/JPSJ.82.014003.
- 8. Czechowski, Z. (2001), Transformation of random distributions into power-like distributions due to non-linearities: application to geophysical phenomena, Geophys. J. Int. 144, 197-205, DOI: 10.1046/j.1365-246X.2001.00318.x.
- 9. Czechowski, Z. (2003), The privilege as the cause of power distributions in geophysics, Geophys. J. Int. 154,3, 754-766, DOI: 10.1046/j.1365-246X.2003.01994.x.
- 10. Czechowski, Z., and M. Białecki (2010), Ito equations as macroscopic stochastic models of geophysical phenomena - construction of the models on the basis of time series. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet - Earth and Planetary Sciences, Vol. 1, Springer, Berlin Heidelberg, 77-96, DOI: 10.1007/978-3-642-12300-9_6.
- 11. Czechowski, Z., and M. Białecki. (2012a), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60,3, 846-857, DOI: 10.2478/s11600-012-0021-0.
- 12. Czechowski, Z., and M. Białecki (2012b), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45,15, 155101, DOI: 10.1088/1751-8113/45/15/155101.
- 13. Czechowski, Z., and A. Rozmarynowska (2008), The importance of the privilege for apperance of inverse-power solutions in Ito equations, Physica A 387,22, 5403-5416, DOI: 10.1016/j.physa.2008.06.007.
- 14. Czechowski, Z., and L. Telesca (2011), The construction of an Ito model for geoelectrical signals, Physica A 390,13, 2511-2519, DOI: 10.1016/j.physa.2011.02.049.
- 15. Drossel, B., and F. Schwabl (1992), Self-organized critical forest-fire model, Phys. Rev. Lett. 69,11, 1629-1632, DOI: 10.1103/PhysRevLett.69.1629.
- 16. González, Á., M. Vázquez-Prada, J.B. Gómez, and A.F. Pacheco (2006), A way to synchronize models with seismic faults for earthquake forecasting: Insights from a simple stochastic model, Tectonophysics 424,3-4, 319-334, DOI: 10.1016/j.tecto.2006.03.039.
- 17. Holliday, J.R., J.B. Rundle, and D.L. Turcotte (2009), Earthquake forecasting and verification. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2438-2449, DOI: 10.1007/978-0-387-30440-3_149.
- 18. Malamud, B.D., G. Morein, and D.L. Turcotte (1998), Forest fires: an example of selforganized critical behavior, Science 281,5384, 1840-1842, DOI: 10.1126/science.281.5384.1840.
- 19. Muñoz-Diosdado, A., A.H. Rudolf-Navarro, and F. Angulo-Brown (2012), Simulation and properties of a non-homogeneous spring-block earthquake model with asperities, Acta Geophys. 60,3, 740-757, 10.2478/s11600-012-0027-7.
- 20. Newman, M.E.J. (2011), Complex systems: A survey, Am. J. Phys. 79,8, 800-810, DOI: 10.1119/1.3590372.
- 21. Rundle, J.B., D.L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis (2003), Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev. Geophys. 41,4, 1019, DOI: 10.1029/2003RG000135.
- 22. Segall, P. (2012), Understanding earthquakes, Science 336,6082, 676-677, DOI: 10.1126/science.1220946.
- 23. Sornette, D. (2006), Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, 2nd ed., Springer, Berlin.
- 24. Tejedor, A., S. Ambroj, J.B. Gómez, and A.F. Pacheco (2008), Predictability of the large relaxations in a cellular automaton model, J. Phys. A: Math. Theor. 41,37, 375102, DOI: 10.1088/1751-8113/41/37/375102.
- 25. Tejedor, A., J.B. Gómez, and A.F. Pacheco (2009), Earthquake size-frequency statistics in a forest-fire model of individual faults, Phys. Rev. E 79,4, 046102, DOI: 10.1103/PhysRevE.79.046102.
- 26. Tejedor, A., J.B. Gómez, and A.F. Pacheco (2010), Hierarchical model for distributed seismicity, Phys. Rev. E 82,1, 016118, DOI: 10.1103/PhysRevE.82.016118.
- 27. Telesca, L., and Z. Czechowski (2012), Discriminating geoelectrical signals measured in seismic and aseismic areas by using Ito models, Physica A 391,3, 809-818, DOI: 10.1016/j.physa.2011.09.006.
- 28. Turcotte, D.L. (1999), Self-organized criticality, Rep. Prog. Phys. 62,10, 1377-1429, DOI: 10.1088/0034-4885/62/10/201.
- 29. Vázquez-Prada, M., Á. González, J.B. Gómez, and A.F. Pacheco (2002), A minimalist model of characteristic earthquakes, Nonlin. Processes Geophys. 9,5/6, 513-519, DOI: 10.5194/npg-9-513-2002.
- 30. Vere-Jones, D. (2009), Earthquake occurrence and mechanisms, stochastic models for. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2555-2580, DOI: 10.1007/978-0-387-30440-3_155.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88551f26-7e3f-420c-8105-3a17bab4fb83