PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Deformation behaviour of high-manganese steel with addition of niobium under quasi-static tensile loading

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the heat generated during deformation under the static testing of high-manganese TWIP steel with addition of niobium was determined. The research combined the interaction of heat generated during deformation, mechanical properties, hardness and microstructure. Temperature and strain were measured simultaneously using infrared (IR) thermography and digital image correlation (DIC) method. The average temperature measured at the necked region equals 42°C at the strain rate of 0.001 s−1 and exceeds 100°C at 0.5 s−1. Therefore at large strains, a reduction in stress was observed. The course of the hardness change coincides very well with the strain changes, however, at the strain rate of 0.5 s−1 near to the necking area the hardness equals to 360 HV2, whereas at the lower strain rates it equals to 370 HV2. These changes are connected mainly with increase in temperature to >100°C
Wydawca
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, Krasinskiego 8, 40-019 Katowice, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, Krasinskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, Krasinskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering, Krasinskiego 8, 40-019 Katowice, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Lukasiewicza 5, 50-371 Wroclaw, Poland
Bibliografia
  • [1] Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater Sci Technol. 1998;14(12):1213–7; https://doi.org/10.1179/mst.1998.14.12.1213
  • [2] Yuan GW, Huang MX. Supper strong nanostructured TWIP steels for automotive applications. Prog Nat Sci Mat Int. 2014;24(1):50–5; https://doi.org/10.1016/j.pnsc.2014.01.004
  • [3] Palma-Elvira ED, Garnica-Gonzalez P, Pacheco-Cedeño JS, Cruz Rivera JJ, Ramos-Azpeitia M, Garay-Reyes CG, et al. Microstructural development and mechanical properties during hot rolling and annealing of an automotive steel combining TRIP/TWIP effects. J Alloys Compd. 2019;798:45–52; https://doi.org/10.1016/j.jallcom.2019.05.130
  • [4] Kozłowska A, Grajcar A, Janik A, Radwański K, Krupp U, Matus K, et al. Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided medium-Mn steels. Arch Civ Mech Eng. 2021;21:3; https://doi.org/10.1007/s43452-021-00284-6
  • [5] Wang C, Cai W, Sun C, Li X, Qian L, Jiang J. Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel. Mater Sci Eng A. 2022;835:142673; https://doi.org/10.1016/j.msea.2022.142673
  • [6] Grajcar A, Borek W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civ Mech Eng. 2008;8:29–38; https://doi.org/10.1016/S1644-9665(12)60119-8
  • [7] Cai W, Wang C, Sun C, Qian L, Fu MW. Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading. Mater Sci Eng. 2022;851:143657; https://doi.org/10.1016/j.msea.2022.143657
  • [8] Barati Rizi MH, Ghiasabadi Farahani M, Aghaahmadi M, Kim JH, Karjalainen LP, Sahu P. Analysis of strain hardening behavior of a high-Mn TWIP steel using electron microscopy and cyclic stress relaxation. Acta Mater. 2022;240:118309; https://doi.org/10.1016/j.actamat.2022.118309
  • [9] Jabłońska MB, Śmiglewicz A, Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Arch Metall Mater. 2015;60(2A):577–80; https://doi.org/10.1515/amm-2015-0176
  • [10] Jabłońska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Procedia Manuf. 2019;27:91–7; https://doi.org/10.1016/j.promfg.2018.12.049
  • [11] Kozłowska A, Radwański K, Matus K, Samek L, Grajcar A. Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures. Arch Civ Mech Eng. 2021;21(1): 324–38; https://doi.org/10.1007/s43452-021-00177-8
  • [12] Wiewiórowska S, Muskalski Z, Siemiński M. The analysis of “hot” drawing process of trip steel wires at different initial temperatures. Arch Metall Mater. 2016;61(4):1991–4; https://doi.org/10.1515/amm-2016-0321
  • [13] Pierce DT, Benzing JT, Jiménez JA, Hickel T, Bleskov I, Keum J, et al. The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia. 2022;22:101425; https://doi.org/10.1016/j.mtla.2022.101425
  • [14] Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J Mater Process Technol. 2017;242:246–59; https://doi.org/10.1016/j.jmatprotec.2016.11.023
  • [15] Madivala M, Bleck W. Strain rate dependent mechanical properties of TWIP steel. JOM. 2019;71(4):1291–302; https://doi.org/10.1007/s11837-018-3137-0
  • [16] Soares GC, Vázquez-Fernández NI, Hokka M. Thermo-mechanical behavior of steels in tension studied with synchronized full-field deformation and temperature measurements. Exp Tech. 2021;45(5):627–43; https://doi.org/10.1007/s40799-020-00436-y
  • [17] Mijangos D, Mejia I, Cabrera JM. Influence of microalloying additions (Nb, Ti, Ti/B, V and Mo) on the microstructure of TWIP steels. Metall Microstruct Anal. 2022;11(3):524–36; https://doi.org/10.1007/s13632-022-00871-w
  • [18] Hamada A, Kömi J. Effect of microstructure on mechanical properties of a novel high-Mn TWIP stainless steel bearing vanadium. Mater Sci Eng A. 2018;718:301–4; https://doi.org/10.1016/j.msea.2018.01.132
  • [19] Bai Y, Jiao D, Li J, Yang Z. Effect of Nb content on the stacking fault energy, microstructure and mechanical properties of Fe-25Mn-9Al-8Ni-1C alloy. Mater Today Commun. 2022;31:103554; https://doi.org/10.1016/j.mtcomm.2022.103554
  • [20] Li D, Feng Y, Song S, Liu Q, Bai Q, Wu G, et al. Influences of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel. Mater Des. 2015;84:238–44; https://doi.org/10.1016/j.matdes.2015.06.092
  • [21] Chandan AK, Tripathy S, Sen B, Ghosh M, Ghosh Chowdhury S. Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy. Scr Mater. 2021;199:113891; https://doi.org/10.1016/j.scriptamat.2021.113891
  • [22] Lee JY, Hong JS, Kang SH, Lee YK. The effect of austenite grain size on deformation of Fe–17Mn steel. Mater Sci Eng A. 2021;809:140972; https://doi.org/10.1016/j.msea.2021.140972
  • [23] FLIR. FLIR T840TM QUICKLY MAKE CRITICAL DECISIONS. 2019. [Online]. Available: https://www.testequipmentdepot.com/flir/pdf/t840_datasheet.pdf. Accessed 14 Nov 2022.
  • [24] Wang YH, Jiang JH, Wanintrudal C, Zhou D, Smith LM, Yang LX. Whole field sheet-metal tensile test using digital image correlation. Exp Tech. 2010;34(2):54–9; https://doi.org/10.1111/j.1747-1567.2009.00483.x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8853fd4f-be72-42ff-a9e9-0e1c103f058c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.