PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
Rocznik
Strony
75--84
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa
  • Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa
  • Department of Orthopaedics, Stellenbosch University, Tygerberg, South Africa
autor
  • Department of Knee and Sport Surgery, Lyon Ortho Clinic, Lyon, France
autor
  • Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa
Bibliografia
  • [1] AHMED A.M., DUNCAN N.A., Correlation of patella tracking pattern with trochlear and retropatellar surface topographies, J. Biomech. Eng., 2000, 122,652–660.
  • [2] BALCAREK P., JUNG K., AMMON J., WALDE T.A., FROSCH S., SCHUTTRUMPF J.P., STURMER K.M., FROSCH K., Anatomy of lateral patellar instability, Am. Journal Sports Med., 2010, 38, 2320–2327.
  • [3] FARAHMAND F., SENAVONGSE W., AMIS A.A., Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint, J. Orthop. Res., 1998, 16, 136–143.
  • [4] JAFARI A., FARAHMAND F., MEGHDARI A., The effects of trochlear groove geometry on patellofemoral joint stability – a computer model study, Proc. Inst. Mech. Eng. H, 2008, 222, 75–88.
  • [5] CARRILLON Y., ABIDI H., DEJOUR D., FANTINO O., MOYEN B., TRAN-MINH V.A., Patellar instability: Assessment on MR imagesby measuring the lateral trochlear inclination-initial experience, Radiology, 2000, 216, 582–585.
  • [6] DEJOUR H., WALCH G., NOVE-JOSSERAND L., Factors of patellar instability: An anatomic radiographic study, Knee Surg. Sports Traumatol. Arthrosc., 1994, 2, 19–26.
  • [7] ESCALA J.S., MELLADO J.M., OLONA J.M., GINE M., SAURI A., NEYRET P., Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features, Knee Surg. Sports Traumatol. Arthrosc., 2006, 14, 264–272.
  • [8] VARADARAJAN K.M., FREIBERG A.A., GILL T.J., RUBASH H.E., LI G., Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion, J. Biomech. Eng., 2010, 132, DOI: 10.1115/1.4001360.
  • [9] BARINK M., VAN DE GROES S., VERDONSCHOT N., DE WAAL MALEFIJT M., The trochlea is bilinear and oriented medially, Clin. Orthop. Relat. Res., 2003, 411, 288–295.
  • [10] IRANPOUR F., MERICAN A., DANDACHLI W., AMIS A.A., COBB J.P., The geometry of the trochlear groove, Clin. Orthop. Relat. Res., 2010, 468, 782–788.
  • [11] BIEDERT R., SIGG A., GAL I., GERBER H., 3D representation of the surface topography of normal and dysplastic trochlea using MRI, Knee, 2011, 18, 340–346.
  • [12] KOHONEN T., SOMERVUO P., How to make large selforganizing maps for nonvectorial data, Neural Netw., 2002, 15, 945–952.
  • [13] DEJOUR D., REYNAUD P., LECOULTRE B., Douleur et instabilité rotulienne, essai de classification, Medecine et Hygiene, 1998, 56, 1466–1471.
  • [14] KOSEL J., GIOUROUDI I., SCHEFFER C., DILLON E., ERASMUS P., Anatomical study of the radius and centre of curvature of the distal femoral condyle, J. Biomech. Eng., 2010, 132, DOI: 10.1115/1.4002061.
  • [15] IRANPOUR F., MERICAN A.M., BAENA F.R.Y., COBB J.P., AMIS A.A., Patellofemoral joint kinematics: The circular path of the patella, J. Orthop. Res., 2010, 28, 589–594.
  • [16] DEJOUR D., LECOULTRE B., Osteotomies in patello-femoral instabilities, Sports Med. Arthrosc., 2007, 15, 39–46.
  • [17] GOUTALLIER D., RAOU D., VAN DRIESSCHE S., Retrotrochlear wedge reduction trochleoplasty for the treatment of painful patella syndrome with protruding trochleae. Technicalnote and early results, Rev. Chir. Orthop. Reparatrice. Appar. Mot., 2002, 88, 678–685.
  • [18] BIEDERT R.M., BACHMANN M., Anterior-posterior trochlera measurements of normal and dysplastic trochlea by magnetic resonance imaging, Knee Surg. Sports Traumatol. Arthrosc., 2009, 17, 1225–1230.
  • [19] QUINTELIER J., LOBBESTAEL F., VERDONK P., DE BAETS P., ALMQVIST F., Patellofemoral contact pressures, Acta of Bioeng. Biomech., 2008, 10, 23–28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8851087c-a0e2-49ae-8538-a8f3a28d4a7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.