PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation and Simulation of Slow Pyrolysis Process of Arabica Coffee Agroindustry Residues in a Pilot-Scale Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coffee pulp and husk are the primary residues of the coffee agro-industry. Disposing of them into the land can bring a serious problem on the environment. Strategies are needed to convert it into more valuable products as well as reduce the risk of environmental damage. This paper reports experimental and simulation investigation on the pyrolysis of Gayo arabica coffee pulp and husk in a pilot scale reactor. The investigation included finding the chemical and physical properties of biomass under ultimate, proximate, bomb calorimeter and TGA analyses. During the pyrolysis experiments, 3 kg of dried raw material was fed into the reactor and heated from room temperature to 600 °C, then held for 2.5 h. Afterwards, the resulting biochar and pyrolytic oil ware quantified for product distribution analysis. Modeling and simulation of the pyrolysis process were performed using Aspen Plus V10 software. Experimental results show that biochar is the main product giving a yield of 43.83%. The percentage of pyrolytic oil and un-condensable gas products are 25.5% and 30.67%, respectively. The thermodynamic simulation shows a good agreement with the experimental result, which helps in optimization and scaling up reactor.
Rocznik
Strony
260--269
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Bukit Indah, Muara Satu, 24352, Lhokseumawe, Indonesia
  • Mechanical Engineering Department, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Bukit Indah, Muara Satu, 24352, Lhokseumawe, Indonesia
autor
  • Mechanical Engineering Department, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Bukit Indah, Muara Satu, 24352, Lhokseumawe, Indonesia
  • Mechanical Engineering Department, Universitas Sumatera Utara, Jalan Tri Dharma, Padang Bulan, 20155, Medan, Indonesia
Bibliografia
  • 1. Adeniyi, A.G., Odetoye, T.E., Titiloye, J., Ighalo, J.O. 2019. A Thermodynamic Study of Rice Husk (Oryza Sativa) Pyrolysis. Eur J Sustain Dev Res 3, 1–10. https://doi.org/10.29333/ejosdr/5830
  • 2. Alias, N.B., Ibrahim, N., Hamid, M.K.A., 2014. Pyrolysis of empty fruit bunch by thermogravimetric analysis. Energy Procedia, 61, 2532–2536. https://doi.org/10.1016/j.egypro.2014.12.039
  • 3. Aller, D., Bakshi, S., Laird, D.A. 2017. Modified method for proximate analysis of biochars. J Anal Appl Pyrolysis, 124, 335–342. https://doi.org/10.1016/j.jaap.2017.01.012
  • 4. Basu, P. 2013. Biomass Gasification, Pyrolysis, and Torrefaction Practical Design and Theory, Second Edi. ed. Elsevier, San Diego, USA.
  • 5. BPS-Statistics Indonesia, 2017. Indonesian Coffee Statistics. BPS - Statistics Indonesia, Jakarta.
  • 6. Directorate General of Estate Crops, 2017. Tree Crop Estate Statistics Of Indonesia. Secretariate of Directorate General of Estate Crops, Jakarta.
  • 7. Ighalo, J.O., Adeniyi, A.G. 2019. Thermodynamic modelling and temperature sensitivity analysis of banana (Musa spp.) waste pyrolysis. SN Appl Sci 1. https://doi.org/10.1007/s42452-019-1147-3
  • 8. International Coffee Organization, 2017. All exporting Countries Total Production Crop Year. England (GB): ICO.
  • 9. Janissen, B., Huynh, T. 2018. Resources, Conservation & Recycling Chemical composition and value-adding applications of co ff ee industry by- products : A review. Resour Conserv Recycl, 128, 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001
  • 10. Kan, T., Strezov, V., Evans, T.J. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev, 57, 1126–1140. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.185
  • 11. Kumar, R., Strezov, V., Lovell, E., Kan, T., Weldekidan, H., He, J., Dastjerdi, B., Scott, J. 2019. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts. Bioresour Technol, 279, 404–409. https://doi.org/https://doi.org/10.1016/j.biortech.2019.01.067
  • 12. Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., Dastjerdi, B. 2020. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev, 123. https://doi.org/10.1016/j.rser.2020.109763
  • 13. Leng, L., Huang, H. 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.09.030
  • 14. Lestinsky, P., Palit, A. 2016. Wood Pyrolysis using aspen plus simulation and industrially applicable model. Geosci Eng LXII, 11–16. https://doi.org/10.1515/gse-2016-0003
  • 15. Nur, T.B., Setiawan, A., Yudanto, B.G., Ependi, S. 2019. Techno-economic analysis of organic rankine cycle fueled biomass waste from palm oil Techno-economic Analysis of Organic Rankine Cycle Fueled Biomass Waste from Palm Oil Mill 020006. https://doi.org/10.1063/1.5094984
  • 16. Patel, S., Kundu, S., Paz-Ferreiro, J., Surapaneni, A., Fouche, L., Halder, P., Setiawan, A., Shah, K. 2019. Transformation of biosolids to biochar: A case study. Environ Prog Sustain Energy, 38, 1–11. https://doi.org/10.1002/ep.13113
  • 17. Patel, S.R., Kundu, S.K., Halder, P.K., Setiawan, A., Paz-Ferreiro, J., Surapaneni, A., Shah, K. V. 2018. A hybrid kinetic analysis of the biosolids pyrolysis using thermogravimetric analyser. Chemistry Select, 3, 13400–13407. https://doi.org/10.1002/slct.201802957
  • 18. Seri, M., Putri, F.S., 2017. Effect of temperature, time, and water content of material on the pyrolysis of palm midrib powder. J Tek Kim USU, 6, 35–40.
  • 19. Setiawan, A., Hayat, F., Faisal, Nur, T.B. 2019. Combustion characteristics of densified bio-char produced from Gayo Arabica coffee-pulp: Effect of binder. IOP Conf Ser Earth Environ Sci, 364. https://doi.org/10.1088/1755-1315/364/1/012007
  • 20. Setiawan, A., Randa, A.G., Faisal, Nur, T.B., Rusdianasari. 2020. Thermal decomposition of Gayo Arabica coffee-pulp in a segmented chamber. J Phys Conf Ser, 1500, 12076. https://doi.org/10.1088/1742-6596/1500/1/012076
  • 21. Syamsudin, Purwati, S., Surachman, A.W.R.B.I. 2016. Isothermal Pyrolysis of Sludge Cake and Pulp Reject From Kraft Pulp Mill. J Selulosa, 6, 71–82.
  • 22. Ward, J., Rasul, M.G., Bhuiya, M.M.K. 2014. Energy recovery from biomass by fast pyrolysis. Procedia Eng, 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791
  • 23. Xianjun, X., Zongkang, S., Peiyong, M., Jin, Y., Zhaobin, W. 2015. Establishment of three components of biomass pyrolysis yield model. Energy Procedia, 66, 293–296. https://doi.org/10.1016/j.egypro.2015.02.061
  • 24. Zhang, W., Henschel, T., Söderlind, U., Tran, K.Q., Han, X. 2017. Thermogravimetric and Online Gas Analysis on various Biomass Fuels. Energy Procedia, 105, 162–167. https://doi.org/10.1016/j.egypro.2017.03.296
  • 25. Adeniyi, A.G., Odetoye, T.E., Titiloye, J., Ighalo, J.O. 2019. A Thermodynamic Study of Rice Husk (Oryza Sativa) Pyrolysis. Eur J Sustain Dev Res, 3, 1–10. https://doi.org/10.29333/ejosdr/5830
  • 26. Alias, N.B., Ibrahim, N., Hamid, M.K.A. 2014. Pyrolysis of empty fruit bunch by thermogravimetric analysis. Energy Procedia, 61, 2532–2536. https://doi.org/10.1016/j.egypro.2014.12.039
  • 27. Aller, D., Bakshi, S., Laird, D.A. 2017. Modified method for proximate analysis of biochars. J Anal Appl Pyrolysis, 124, 335–342. https://doi.org/10.1016/j.jaap.2017.01.012
  • 28. Basu, P. 2013. Biomass Gasification, Pyrolysis, and Torrefaction Practical Design and Theory, Second Edi. ed. ELSEVIER, San Diego, USA.
  • 29. BPS-Statistics Indonesia. 2017. Indonesian Coffee Statistics. BPS - Statistics Indonesia, Jakarta.
  • 30. Directorate General of Estate Crops. 2017. Tree Crop Estate Statistics Of Indonesia. Secretariate of Directorate General of Estate Crops, Jakarta.
  • 31. Ighalo, J.O., Adeniyi, A.G. 2019. Thermodynamic modelling and temperature sensitivity analysis of banana (Musa spp.) waste pyrolysis. SN Appl Sci, 1. https://doi.org/10.1007/s42452-019-1147-3
  • 32. International Coffee Organization. 2017. All exporting Countries Total Production Crop Year. England (GB): ICO.
  • 33. Janissen, B., Huynh, T. 2018. Resources, Conservation & Recycling Chemical composition and value-adding applications of co ff ee industry by- products: A review. Resour Conserv Recycl, 128, 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001
  • 34. Kan, T., Strezov, V., Evans, T.J. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev, 57, 1126–1140. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.185
  • 35. Kumar, R., Strezov, V., Lovell, E., Kan, T., Weldekidan, H., He, J., Dastjerdi, B., Scott, J. 2019. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts. Bioresour Technol, 279, 404–409. https://doi.org/https://doi.org/10.1016/j.biortech.2019.01.067
  • 36. Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., Dastjerdi, B. 2020. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev, 123. https://doi.org/10.1016/j.rser.2020.109763
  • 37. Leng, L., Huang, H. 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.09.030
  • 38. Lestinsky, P., Palit, A. 2016. Wood Pyrolysis Using Aspen Plus Simulation and Industrially Applicable Model. Geosci Eng LXII, 11–16. https://doi.org/10.1515/gse-2016-0003
  • 39. Nur, T.B., Setiawan, A., Yudanto, B.G., Ependi, S. 2019. Techno-economic analysis of organic rankine cycle fueled biomass waste from palm oil Techno-economic Analysis of Organic Rankine Cycle Fueled Biomass Waste from Palm Oil Mill 020006. https://doi.org/10.1063/1.5094984
  • 40. Patel, S., Kundu, S., Paz-Ferreiro, J., Surapaneni, A., Fouche, L., Halder, P., Setiawan, A., Shah, K. 2019. Transformation of biosolids to biochar: A case study. Environ Prog Sustain Energy, 38, 1–11. https://doi.org/10.1002/ep.13113
  • 41. Patel, S.R., Kundu, S.K., Halder, P.K., Setiawan, A., Paz-Ferreiro, J., Surapaneni, A., Shah, K.V. 2018. A Hybrid Kinetic Analysis of the Biosolids Pyrolysis using Thermogravimetric Analyser. Chemistry-Select, 3, 13400–13407. https://doi.org/10.1002/slct.201802957
  • 42. Seri, M., Putri, F.S. 2017. Effect of Temperature, Time, and Water Content of Material on The Pyrolysis of palm Midrib Powder. J Tek Kim USU, 6, 35–40.
  • 43. Setiawan, A., Hayat, F., Faisal, Nur, T.B. 2019. Combustion characteristics of densified bio-char produced from Gayo Arabica coffee-pulp: Effect of binder. IOP Conf Ser Earth Environ Sci, 364. https://doi.org/10.1088/1755-1315/364/1/012007
  • 44. Setiawan, A., Randa, A.G., Faisal, Nur, T.B., Rusdianasari. 2020. Thermal decomposition of Gayo Arabica coffee-pulp in a segmented chamber. J Phys Conf Ser 1500, 12076. https://doi.org/10.1088/1742-6596/1500/1/012076
  • 45. Syamsudin, Purwati, S., Surachman, A.W.R.B.I. 2016. Isothermal Pyrolysis of Sludge Cake and Pulp Reject From Kraft Pulp Mill. J Selulosa, 6, 71–82.
  • 46. Ward, J., Rasul, M.G., Bhuiya, M.M.K. 2014. Energy recovery from biomass by fast pyrolysis. Procedia Eng 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791
  • 47. Xianjun, X., Zongkang, S., Peiyong, M., Jin, Y., Zhaobin, W. 2015. Establishment of Three Components of Biomass Pyrolysis Yield Model. Energy Procedia, 66, 293–296. https://doi.org/10.1016/j.egypro.2015.02.061
  • 48. Zhang, W., Henschel, T., Söderlind, U., Tran, K.Q., Han, X. 2017. Thermogravimetric and Online Gas Analysis on various Biomass Fuels. Energy Procedia, 105, 162–167. https://doi.org/10.1016/j.egypro.2017.03.296
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-884ff541-c0e1-4fd4-b100-5b8038757897
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.