PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing Spatial Distributions of Total Trace Elements Content in Bottom Sediments of Dzierżno Duże Water Reservoir – Geostatistics-Based Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to assess the spatial distributions of total trace elements content in the bottom sediments of Dzierżno Duże water reservoir, along with the comparison of the accuracy and characteristics of Kriging and IDW interpolations. On the basis of regular measurement grid consisting of 53 points, bottom sediments samples were collected. Mean values of total trace elements content in bottom sediments of Dzierżno Duże were as follows: Zn – 410 mg/kg, Pb – 57 mg/kg, Cr – 36 mg/kg, Cu – 40 mg/kg, Cd – 5 mg/kg, Ni – 16 mg/kg and Ba – 267 mg/kg. According to the geochemical quality classification, the concentrations of Cd in 32% of samples were assigned to class IV (heavily contaminated), 45% to class III (contaminated), Zn in 42% samples to class III with 1 sample in class IV and 26% to class II (slightly contaminated), Pb in 9% to class III and 58% to class II, Cu in 4% to class III and 68% to class II, Cr in 17% to class II, Ni in 55% to class II, Ba in 8% to class III and 61% in class II. Coefficient of determination was determined between each case of trace elements content. The highest correlation (R2 in range from 0.81 to 0.96) was observed between Zn and Pb, Zn and Cu, Zn and Cr, Zn and Ni, Pb and Cu, Pb and Cr, Cu and Cr, Cr and Ni. Significant correlation (R2 in range from 0.70 to 0.80) occurred between: Zn and Cd, Pb and Ni, Cu and Ni, Cd and Ni. The lowest correlations (R2 in range from 0.25 to 0.70) were observed between concentration of Ba and the rest of trace elements. Two different interpolation methods were chosen for the purpose of generating spatial distributions – Inverse Distance Weighted and Ordinary Kriging. These methods were chosen for purpose of obtaining optimal accuracy result of spatial distributions. The distributions of trace elements content were classified by means of geochemical criteria. In the case of accuracy comparison between IDW and Ordinary Kriging, the former had slightly better results in terms of mean value and root mean square. The generated spatial distributions allowed to determine the most contaminated areas, which were mainly northern-central and southern-central parts of water Dzierżno Duże reservoir.
Rocznik
Strony
52--60
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
  • Faculty of Environmental Engineering and Biotechnology, Czestochowa University of Technology, ul. Dąbrowskiego 69, 42-200 Czestochowa, Poland
autor
  • Faculty of Environmental Engineering and Biotechnology, Czestochowa University of Technology, ul. Dąbrowskiego 69, 42-200 Czestochowa, Poland
Bibliografia
  • 1. Absalon D., Kanok J., Leśniok M. 1996. Characteristics of selected meteorological and hydrological elements in 1961–1990 (in Polish). In: Tendencje zmian obiegu wody w zlewni górnej Odry. Wydział Nauk o Ziemi Uniwersytetu Śląskiego, Sosnowiec, 22–58.
  • 2. Bąk L, Dąbkowski S.L. 2013. Sediment spatial distribution in the Suchedniów reservoir. Journal of Water and Land Development, 19, 13–22.
  • 3. Bąk Ł, Górski J, Rabajczyk A, Szwed M. 2013. Content of trace elements compounds in the bottom sediments of the suchedniów water reservoir (in Polish). Proceedings of ECOpole, 7(1), 287–294.
  • 4. Bąk Ł., Górski J., Szeląg B. 2014. Trace elements concentrations in water and bottom sediments of small water reservoir in Kaniow. Ecological Chemistry and Engineering, 21(2), 167–176.
  • 5. Bojakowska I. 2001. Criteria for assessing the pollution of water sediments (in Polish). Przegląd Geologiczny, 49(3), 213−218.
  • 6. Czaja S., Jankowski A.T. 1990. Application of the time fluctuation model for purpose of the assessment of anthropogenic changes in the outflow of rivers in the Katowice voivodship in 1961–1980 (in Polish). In: J. Trembaczowski (red.), Geographia Studia at Dissertationes, T.13, Wydawnictwo UŚ, Katowice, 7–23.
  • 7. Czaja S., Jankowski A. T. 1991. The share of mine waters in the outflow of rivers of the Katowice province in 1985–1987 (in Polish). In: Jankowski A.T. (red.), Materiały Konferencji Hydrograficznej „Przeobrażenia stosunków wodnych na obszarach silnej antropopresji”. Sosnowiec, 145–156.
  • 8. Dobicki W. 2004. Bioavailability of trace elements in the lakes environment of the Suwałki Landscape Park (in Polish). Zeszyty Naukowe Akademii Rolniczej, Wrocław, 115.
  • 9. Gałka B., Wiatkowski M. 2010. Characteristics of bottom sediments of retention reservoir Młyny and the possibility of their agricultural use (in Polish). Water-Environment-Rural Areas, t. 10, 4(32), 53–63.
  • 10. Gong G., Mattevada S., O’Bryant S.E. 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environmental Research, 130, 59–69.
  • 11. Hu K.L., Li B.G., Lu Y.Z., Zhang F.R. 2005. Comparison of various spatial interpolation methods for non-stationary regional soil mercury content. Huan Jing Ke Xue, 25(3), 132–137.
  • 12. Jancewicz A, Dmitruk U, Sośnicki Ł, Tomczuk U, Bartczak A. 2012. Influence of land development in the drainage area on bottom sediment quality in some dam reservoirs (in Polish). Ochrona Środowiska, 34(4), 29–34.
  • 13. Kazimierowicz Z., Kazimierowicz J. 2014. The study of trace elements content in the catchment area of the Biebrza River and three tributaries (in Polish). Inżynieria Ekologiczna, 40, 25–32.
  • 14. Kondracki J. 1978. Physical geography of Poland (in Polish). PWN Warszawa, pp. 463.
  • 15. Mabit L., Bernard C. 2007. Assessment of spatial distribution of fallout radionuclides through geostatistics concept. Journal of Environmental Radioactivity, 97(2–3), 206–219.
  • 16. Reza S.K., Sarkar D., Baruah U., Das T.H. 2010. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district. Agropedology, 20(1), 38–48.
  • 17. Robinson T.P., Metternicht G.M. 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50(2), 97–108.
  • 18. Rozpondek K., Rozpondek R. 2017. Issues of Sustainable Development in the Light of a GIS-based Assessment of the Geochemical State of the Aquatic Environment, 12(1), 131–137.
  • 19. Rozpondek K., Rozpondek R., Pachura P. 2017. Characteristics of spatial distribution of phosphorus and nitrogen in the bottom sediments of the water reservoir Poraj, Journal of Ecological Engineering, 18(4), 178–184.
  • 20. Rozpondek R., Wancisiewicz K., Kacprzak M. 2016. GIS in the studies of soil and water Environment. Journal of Ecological Engineering, 17(3), 134–142.
  • 21. Rzętała M. 1996. Influence of anthropopressure on the nature of the use of the hydrodam of Dzierżno (field trip) (in Polish). In: Z badań nad wpływem antropopresji na kształtowanie warunków hydrologicznych. Materiały konferencyjne. SKNG UŚ, Wydział Nauk o Ziemi Uniwersytetu Śląskiego, Sosnowiec, 86–93.
  • 22. Rzętała M. 2005. Water balance and dynamics of changes in selected contaminations of the Dzierżno Duże reservoir in conditions of strong anthropopressure (in Polish). Wydawnictwo Uniwersytetu Śląskiego.
  • 23. Sidoruk M., Potasznik A. 2013. Assesment of lead, zinc and chromium contamination of bottom sediments in lake Sunia (in Polish). Proceedings of ECOpole, 7(2), 713–720.
  • 24. Szydłowski K., Podlańska J. 2016. Concentration of chosen trace elements in bottom deposits of watercourse. Infrastructure and Ecology of Rural Areas, 1(1), 59–71.
  • 25. Ulrich K.U., Paul L., Hupfer M. 2000. Contaminant levels in the sediments of dams of backwaters (in German). Wasser und Boden, 52, 27–32.
  • 26. Wiatkowski M. 2008. Quality of study results of water inflowing and outflowing from small water reservoir Młyny on river Julianpolka (in Polish). Infrastruktura i Ekologia Terenów Wiejskich, 9, 307–318.
  • 27. Zhou Y., Michalak A. M. 2009. Characterizing attribute distributions in water sediments by geostatistical downscaling. Environmental Science & Technology, 43(24), 9267–9273.
  • 28. Żmuda S. 1973. Anthropogenic transformations of the natural environment of the Upper Silesian conurbation (in Polish). Śląski Instytut Naukowy, Katowice, pp. 211.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-884cde57-85a1-4ded-ba3f-fd36b5be815f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.