PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Contact Strength, Tooth Wear and Metal-Polymer Life of Worm Gears

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of a study investigating worm gears consisting of polymer worm wheels and steel involute and Archimedes worms. The author uses his own calculation method to predict polymer wheel wear, gear life and maximum contact pressure in mesh. The effect of tooth correction and wear on gear life and contact pressure is considered. Cases of double and triple tooth engagement are analysed. The worm wheel is made of non-reinforced polyamide PA6. Quantitative and qualitative relationships are established between the maximum initial contact pressure along tooth profile and the tooth correction coefficient. Tooth wear causes a considerable decrease in contact pressure, with the highest decrease observed at the exit of engagement. The maximum contact pressure is generated at the exit of engagement. The same trend is observed for tooth wear. The minimum gear life is observed at the exit of engagement. It increases linearly with increasing the coefficient of tooth correction. The gear life significantly increases (by approx. 56%) in triple tooth engagement compared to double tooth engagement.
Twórcy
  • Aerospace Faculty, National Aviation University, Liubomyra Huzara Ave. 1, 03058 Kyiv, Ukraine
  • Lublin University of Technology, ul. Nadbystrzycka 36, 20-388 Lublin, Poland
Bibliografia
  • 1. Andreikiv A.Je. and Chernets M.V. Assessment of the Contact Interaction of Machine Parts in Friction [in Russian]. Kiev Naukova Dumka; 1991.
  • 2. Chernets M. A method for predicting сontact strength and life of Archimedes and involute worm gears, considering the effect of wear and teeth correction, Tribology in Industry. 2015; 1: 134–141.
  • 3. Chernets M.V., Jarema R.J. Prediction of the life of the worm gears in Archimedes and involute worm gears. Problems of Tribology. 2011; 2: 21–22.
  • 4. Czerniec M., Kiełbiński J.: Prognozowanie trwałości tribologicznej kół zębatych walcowych ewolwentowych. Wyd. Politechniki Lubelskiej; 2003.
  • 5. Chernets M.V. Prediction Method of Contact Pressures, Wear and Life of Worm Gears with Archimedean and Involute Worm, Taking Tooth Correction into Account, Journal of Friction and Wear. 2019; 4: 342–348.
  • 6. Chernets M. Research of influence of engagement pairing of the corrected worm gear with involute worm on the life and contact pressure. Tribology in Industry. 2020; 42(3): 363–369.
  • 7. Chernets M.V. Tribocontact tasks for cylindrical joints with technological non-circularity. Lublin Lublin University of Technology; 2013.
  • 8. De Almeida Rosa A.G., Moreto J.A., Manfrinato M.D., Rossino L.S. Study on friction and wear behavior of SAE 1045 steel, reinforced nylon 6.6 and NBR rubber used in clutch disks. Mat. Res. 2014; 17(6): 1397–1403.
  • 9. Gasparin A., L., Corso L. L., Tentardini E. K., Reis-Nunes R. C., de Camargo-Forte M., M., de Oliveira R., V.. Polyamide worm gear: manufacturing and performance. Mat. Res. 2012; 15(3): 483–489.
  • 10. Gun-Hee K.1, Jeong-Won L. Tae-Il S. Durability Characteristics Analysis of Plastic Worm Wheel with Glass. Materials. 2013; 6: 1873–1890.
  • 11. Hiltcher Y., GuingandM., de Vaujany J.P. Load Sharing of Worm Gear With a Plastic Wheel. J. Mech. Des. 2007; 129(1): 23–30.
  • 12. Jbily D., Guingang M., de Vaujany J.P. Loaded behaviour of steel / bronze worm gear. International Gear Conference, Lyon Villenbanne, France 2014, 32–42.
  • 13. Jbily D., Guingang M., de Vaujany J.P. A wear model for worm gear, J.MechEng. 2016; 230(7–8): 1290–1302.
  • 14. Kalácska G. An engineering approach to dry friction behaviour of numerous engineering plastics with respect to the mechanical properties. eXPRESS Polymer Letters. 2013; 7(2): 199–210.
  • 15. Kim S.H., Shin M. C., Won Byun J., Hwan K.O. Efficiency Prediction of Worm Gear with Plastic Worm Wheel. International Journal of Precision Engineering and Manufacturing. 2012; 13(2): 167–174.
  • 16. Mithun V., Kulkarni K., Elagovan K., Hemachandra R., Basappa S. J. Tribological behaviours of ABS and PA6 polymer metal sliding combinations under dry friction, waterabsorbed and electroplated conditions. Journal of Engineering Science and Technology. 2016; 11(1): 12–18.
  • 17. Palabiyik M., Bahadur S. Tribological studies of polyamide 6 and high-density polyethylene blends filled with PTFE and copper oxide and reinforced with short glass fibers. Wear. 2002; 253: 369–376.
  • 18. Pogaˇcnik A., Kupec A., Kalin M. Tribological properties of polyamide (PA6) in self-mated contacts and against steel as a stationary and moving body. Wear. 2017; 378–379: 17–26.
  • 19. Sabiniak H.G. Wear and life of the worm gears. Publishing House of Lodz University of Technology: Lodz 2007.
  • 20. Sharif K.J., Kong S., Evans H.P., Snidle R.W. Contact and elastohydrodynamic analysis of worm gears: Part 1 Theoretical formulation. Proc. Inst. Mech. Engrs, Part C: J. Mechanical Engineering Science. 2001; 215: 817–830.
  • 21. Sharif K.J., Kong S., Evans H.P., Snidle R.W. Contact and elastohydrodynamic analysis of worm gears: Part 2 Rresults, Proc. Instn. Mech. Engrs, Part C: J. Mechanical Engineering Science. 2001; 215: 831–846.
  • 22. Sharif K.J., Evans H.P., Snidle R.W., Barnett D., Egorov I.M., Effect of elasto-hydrodynamic film thickness on a wear model for worm gears, Proc Institutions Mechanical Enginers, Part J: Journal Engineering Tribology. 2006; 220: 295–306.
  • 23. Sharif K.J., Evans H.P., Snidle R.W., Prediction of the wear pattern in worm gears, Wear. 2006: 261(5–6): 666–673.
  • 24. Sharif K.J., Evans H.P., Snidle R.W. Wear modellng in worm gears. IUTAM Symposium on Elastohydrodynamic and Microelastohydro-dynamics. 2009; 134 (9): 371–383.
  • 25. Snidle R.W., Evans H.P. Some aspects of gear, Mech. Eng. Science, 2009; 223(1): 103–114.
  • 26. Yang F., Su D., Gentle C. R. Finite element modelling and load share analysis for involute worm gears with localized tooth contact. Proc. ImechE, Part C: Journal of Mechanical Engineering Science, 2001; 215: 805–816.
  • 27. Zubrzycki J., Świć A., Taranenko W. Mathematical model of the hole drilling process and typical autom. ated process for designing hole drilling operations. Robotics in theory and practice. 2013: 221–229.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-884c7238-3c13-4b8c-ae56-e951e2ab0c02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.