PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Micromechanical Behaviors of Bulk Amorphous Alloy Prepared by Spark Plasma Sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to prepare Zr55Cu30Al10Ni5 bulk amorphous alloys by spark plasma sintering of raw amorphous alloy powders and investigate their microstructure and micromechanical behaviors. When the sintering temperature (Ts) was 675K, which was lower than the glass transition temperature (Tg) of the material, the sintered sample was almost fully amorphous but the density was lower. However, when Ts was 705K, which was higher than Tg, partial crystallization occurred, but the density was higher. The hardness of the bonding zone of the sintered sample at 675K was 5.291 GPa due to the lower density, which was lower than that at 705K, and the hardness at 705K was 8.836 GPa. The generation of thermodynamically stable intermetallic phases, the hardness, and the elastic modulus of the samples sintered above Tg were higher due to the higher density.
Twórcy
autor
  • Taiyuan University of Science and Technology, College of Materials Science and Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, College of Materials Science and Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, College of Materials Science and Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, College of Materials Science and Engineering, Taiyuan 030024, China
Bibliografia
  • [1] C. Zhang, D. Ouyang, S. Pauly, L. Liu, 3D printing of bulk metallic glasses, Mater. Sci. Eng. R. 145, 100625 (2021). DOI: https://doi.org/10.1016/j.mser.2021.100625
  • [2] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59, 2243-2267 (2011). DOI:10.1111/j.2041-1294.2010.00019.x
  • [3] C. Zhang, X.M. Li, S.Q. Liu, et al., 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications, J. Alloys Comp. 790, 963-973 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.03.275
  • [4] M.F. Ashby, A.L. Greer, Metallic glasses as structural materials, Scr. Mater. 54, 321-326 (2006). DOI: https://doi.org/10.1016/j.scriptamat.2005.09.051
  • [5] W.H. Wang, Development and implication enlightenment of amorphous alloys, Bull. Chin. Acad. Sci. 37, (2022). DOI: https://doi.org/10.16418/ j.issn.1000-3045.20211208008
  • [6] Z.X. Chang, Y.Q. Ge, L. Sun, et al., The micro-zones formation of Zr-based bulk metallic glass composite fabricated by laser 3D printing, J. Manuf. Process. 76, 167-174 (2022). DOI: https://doi.org/10.17265/2161-6221/2017.7-8.001
  • [7] Q.S. Zhang, W. Zhang, A. Inoue, Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25mm by copper mold casting, Mater. Trans. 48, 629-631 (2007). DOI: https://doi.org/10.2320/matertrans.48.629
  • [8] M.M. Prabhakar, A.K. Saravanan, A. Haiter Lenin, et al., A short review on 3D printing methods, process parameters and materials, Mater. Today: Proc. 45, 6108-6114 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.10.225
  • [9] Y.Q. Ge, X. Chen, Z.X. Chang, The forming and crystallization behaviors of Zr50Ti5Cu27Ni10Al8 bulk amorphous alloy by laser additive manufacturing, Mater. Express. 10, 1155-1160 (2020). DOI: https://doi.org/10.1166/mex.2020.1724
  • [10] O.Y. Di, P.C. Zhang, C. Zhang, et al., Understanding of crystallization behaviors in laser 3D printing of bulk metallic glasses, Appl. Mater. Today. 23, 100988 (2021). DOI: https://doi.org/10.1016/j.apmt.2021.100988
  • [11] C.K. Zhuang, H.P Ding, Y.F Ma, et al., Research progress of preparation of amorphous alloys via spark plasma sintering, Rare Metal Mater. Eng. 50, 1096-1106(2021).
  • [12] Q. Li, G. Wang, X.P. Song, et al., Ti50Cu23Ni20Sn7 bulk metallic glasses prepared by mechanical alloying and spark plasma sintering, J. Mater. Process. Technol. 209, 3285-3290 (2009). DOI: https://doi.org/10.1016/j.jmatprotec.2008.07.050
  • [13] Z.H. Chu, H. Kato, G.Q. Xie, et al., Consolidation and mechanical properties of Cu46Zr42Al7Y5 metallic glass by spark plasma sintering, J. Non Cryst. Solids. 358, 1263-1267 (2012). DOI: https://doi.org/10.1016/j.jnoncrysol.2012.02.027
  • [14] X.P. Li, M. Yan, H. Imai, et al., Fabrication of 10mm diameter fully dense Al86Ni6Y4.5Co2La1.5 bulk metallic glass with high fracture strength, Mater. Sci. Eng. A. 568, 155-159 (2013). DOI: https://doi.org/10.1016/j.msea.2013.01.041
  • [15] L.L. Ji, X.B. Yun, Y.Z. Lü, et al., Preparation of Zr50Ti5Cu27Ni10Al8 bulk amorphous alloy by spark plasma sintering, Chin. J. Rare Met. 44, 1221-1226 (2020). DOI: info:doi/10.1166/mex.2020.1724
  • [16] C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51, 87-99 (2003). DOI: https://doi.org/10.1016/S1359-6454(02)00303-8
  • [17] S. Vincent, B.S. Murty, M.J. Kramer, et al., Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass, Mater. Des. 65, 98-103 (2015). DOI: https://doi.org/10.1016/j.matdes.2014.09.017
  • [18] A. Concustell, N. Mattern, H. Wendrock, et al., Mechanical properties of a two-phase amorphous Ni-Nb-Y alloy studied by nanoindentation, Scr. Mater. 56, 85-88 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2006.09.026
  • [19] A.L. Greer, A. Castellero, S.V. Madge, et al., Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys, Mater. Sci. Eng. A. 375-377, 1182-1185 (2004). DOI: https://doi.org/10.1016/j.msea.2003.10.032
Uwagi
1. This project was supported by Supported by Fundamental Research Program of Shanxi Province (No.202103021224266, No.202103021223297), Shanxi Scholarship Council of China (No. 2021-139) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2021L307).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88492d06-7e5e-4852-a2b7-1383120831b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.