PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a Gas Sensor Array to Effectiveness Monitoring of Air Contaminated with Toluene Vapors Absorption Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article demonstrates the application of a gas sensor array to monitor the effectiveness of the absorption process of air stream purification from odorous compounds (toluene vapors). A self-constructed matrix consisting of five commercially available gas sensors was used. Multiple linear regression (MLR) was selected as the statistical technique used to calibrate the matrice. Gas chromatography coupled with a flame ionization detector (GC-FID) was used as a reference analytical technique, which enabled to obtain reliable quantitative determinations of toluene concentration in the samples. A commercially available absorption liquid dedicated to non-polar compounds was used as an absorbent. The process was carried out in two identical systems: in first, pure toluene was absorbed and in the second, toluene vapor contaminated with acetone. This approach allowed verifying the selectivity of the prepared MLR calibration model for process control in the case of the presence of more or less expected pollutants in the treated gas. The results obtained with the gas sensor array were related to the reference technique and they confirm the usefulness and advisability of using these devices to monitor the absorption processes as a cheaper and more time-efficient alternative to chromatographic methods. The root mean square error (RMSE) in absorptivity determination between the results received with the analytical and sensor techniques was 0.019 and 0.041 when treating pure toluene vapors and its vapors with acetone, respectively. Compared to instrumental techniques, sensor matrices are technologically less complex, useful for laboratory purposes, as well as showing application potential for field studies. However, it is necessary to develop more sensitive and selective chemical gas sensor arrays and better master advanced data processing and identification techniques.
Słowa kluczowe
Rocznik
Strony
269--282
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Amon, M., Dobiec, M., Sneath, R.W., Phillips, V.R., Misselbrook, T.H., Pain, B.F. 1997. A farmscale study on the use of clinoptilolite zeolite and De-Odorase for reducing odour and ammonia emissions from broiler houses. Bioresource Technology, 61(3), 229–237. https://doi.org/10.1016/S0960-8524(97)00005-9
  • 2. Andersen, K.B., Beukes, J.A., Feilberg, A. 2013. Non-thermal plasma for odour reduction from pig houses – A pilot scale investigation. Chemical Engineering Journal, 223, 638–346. https://doi.org/10.1016/j.cej.2013.02.106
  • 3. Brosseau, J., Heitz, M. 1994. Trace gas compound emissions from municipal landfill sanitary sites. Atmospheric Environment, 28(2), 285–293. https://doi.org/10.1016/1352-2310(94)90103-1
  • 4. Busca, G., Pistarino, C. 2003. Technologies for the abatement of sulphide compounds from gaseous streams: a comparative overview. Journal of Loss Prevention in the Process Industry, 16(5), 363–371. https://doi.org/10.1016/S0950-4230(03)00071-8
  • 5. Chen, C.C., Huang, Y.H., Hung, S.M., Chen, C., Lin, C.W., Yang, H.H. 2021. Hydrophobic deep eutectic solvents as attractive media for low-concentration hydrophobic VOC capture. Chemical Engineering Journal, 424. https://doi.org/10.1016/j.cej.2021.130420
  • 6. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N., Feng, L. 2019. The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, 1038–1044. https://doi.org/10.1016/j.scitotenv.2018.08.230
  • 7. de la Rosa, D.A., Velasco, A., Rosas, A., Volke-Sepulveda, T. 2006. Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area. Atmospheric Environment, 40(12), 2079–2088. https://doi.org/10.1016/j.atmosenv.2005.11.055
  • 8. Di Francesco, F., Lazzerini, B., Marcelloni F., Pioggia G. 2001. An electronic nose for odour annoyance assessment. Atmospheric Environment, 35(7), 1225–1234. https://doi.org/10.1016/S1352-2310(00)00392-7
  • 9. Dobrzyniewski, D., Szulczyński, B., Dymerski, T., Gębicki, J. 2021. Development of gas sensor array for methane reforming process monitoring. Sensors, 21(15). https://doi.org/10.3390/s21154983
  • 10. Dymerski, T., Gębicki, J., Wardencki, W., Namieśnik, J. 2013. Quality Evaluation of Agricultural Distillates Using an Electronic Nose. Sensors, 13(12), 15954–15967. https://doi.org/10.3390/s131215954
  • 11. Eitzer, B.D. 1995. Emission of Volatile Organic Chemicals from Municipal Solid Waste Composting Facilities. Environmental Science & Technology, 29, 896–902. https://doi.org/10.1021/es00004a009
  • 12. Freudenthal, K., Otterpohl, R., Behrendt, J. 2005. Absorption of odorous substances using selective gas-liquid separation processes. Waste Management, 25(9), 975–984. https://doi.org/10.1016/j.wasman.2005.07.007
  • 13. Gębicki, J., Byliński, H., Namieśnik, J. 2016. Measurement Techniques for assessing the olfactory impact of municipal sewage treatment plants. Environmental Monitoring and Assessment, 188(32). https://doi.org/10.1007/s10661-015-5024-2
  • 14. Gębicki, J., Dymerski T., Namieśnik, J. 2014. Monitoring of Odour Nuisance from Landfill Using Electronic Nose. Chemical Engineering Transactions, 40, 85–90. https://doi.org/10.3303/CET1440015
  • 15. Gębicki, J., Szulczynski, B., Kaminski, M. 2015. Determination of authenticity of brand perfume using electronic nose prototypes. Measurement Science and Technology, 26(12). https://doi.org/10.1088/0957-0233/26/12/125103
  • 16. Grant,W.M.1986.Toxicology of the Eye. 3rd ed. Springfield, L: Charles C. Thomas Publisher, 927.
  • 17. Guffanti, P., Pifferi, V., Falciola, L., Ferrante, V. 2018. Analyses of odours from concentrated animal feeding operations: A review. Atmospheric Environment, 175, 100–108. https://doi.org/10.1016/j.atmosenv.2017.12.007
  • 18. Han, Z., Qi, F., Li, R., Wang, H., Sun, D. 2020. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. Chemosphere, 249. https://doi.org/10.1016/j.chemosphere.2020.126077
  • 19. Han, Z., Qi, F., Wang, H., Li, R., Sun, D. 2019. Odor assessment of NH3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant. Bioresource Technology, 282, 447–455. https://doi.org/10.1016/j.biortech.2019.03.062
  • 20. Jafari, M.J., Karimi, A., Azari, M.R. 2009. The challenges of controlling organic solvents in a paint factory due to solvent impurity. Industrial Health, 47(3), 326–332. https://doi.org/10.2486/indhealth.47.326
  • 21. Kim, K.Y., Ko, H.J., Kim, H.T., Kim, Y.S., Roh, Y.M., Lee, C.M., Kim, C.N. 2008. Odor reduction rate in the confinement pig building by spraying various additives. Bioresource Technology, 99(17), 8464–8469. https://doi.org/10.1016/j.biortech.2007.12.082
  • 22. Kim, J.Y., Park, J.K., Emmons, B., Armstrong, D.E. 1995. Survey of volatile organic compounds at a municipal solid waste composting facility. Water Environment Research, 67(7), 1044–1051. https://www.jstor.org/stable/25044664
  • 23. Lewkowska, P., Cieślik, B., Dymerski, T., Konieczka, P., Namieśnik, J. 2016. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environmental Research, 151, 573–586. https://doi.org/10.1016/j.envres.2016.08.030
  • 24. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G., An, T. 2020. Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253. https://doi.org/10.1016/j.jclepro.2020.120019
  • 25. Liu, Y., Yang, H., Lu, W. 2020. VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. Journal of Environmental Sciences, 98, 143–150. https://doi.org/10.1016/j.jes.2020.05.009
  • 26. Malovanyy, M., Korbut, M., Davydova, I., Tymchuk, I. 2021. Monitoring of the Influence of Landfills on the Atmospheric Air Using Bioindication Methods on the Example of the Zhytomyr Landfill, Ukraine. Journal of Ecological Engineering, 22(6), 36–49. https://doi.org/10.12911/22998993/137446
  • 27. Mohd, A.M., Hashim, N., Abd Aziz, S., Lasekan, O. 2020. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science Technology, 99, 1–10. https://doi.org/10.1016/j.tifs.2020.02.028
  • 28. Nie, E., Zheng, G., Shao, Z., Yang, J., Chen, T. 2018. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Management, 79, 188–195. https://doi.org/10.1016/j.wasman.2018.07.024
  • 29. Patel, H.K. 2014. The electronic nose: artificial olfaction technology. New Delhi. https://doi.org/10.1007/978-81-322-1548-6
  • 30. Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W. 2010. Handbook of Machine Olfaction: Electronic Nose Technology, Germany.
  • 31. Phung, L.D. 2006. Odor from pig production: its relation to diet. Ph.D. Thesis, Wageningen Institute of Animal Science, Wageningen University and Research Centre, Wageningen, The Netherlands.
  • 32. Ramos, V.C., Han, W., Yeung, K.L. 2020. A comparative study between ionic liquid coating and counterparts in bulk for toluene absorption. Green Chemical Engineering, 1(2), 147–154. https://doi.org/10.1016/j.gce.2020.10.008
  • 33. Revah, S., Morgan-Sagastume, J.M. 2005. Methods of Odor and VOC Control. In Biotechnology for Odor and Air Pollution Control. Berlin, Germany, 29–63. https://doi.org/10.1007/3-540-27007-8_3
  • 34. Rolewicz-Kalinska, A., Lelicinska-Serafin, K., Manczarski, P. 2021. Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, 69–80. https://doi.org/10.1016/j.cherd.2020.10.017
  • 35. Rybarczyk, P., Szulczyński, B., Gębicki, J. 2020. Simultaneous Removal of Hexane and Ethanol from Air in a Biotrickling Filter - Process Performance and Monitoring Using Electronic Nose. Sustainability, 12(1). https://doi.org/10.3390/su12010387
  • 36. Sá, M.F., Castro, V., Gomes, A.I., Morais, D.F., Silva Braga, R.V., Saraiva, I., Souza-Chaves, B.M., Park, M., Fernández-Fernández, V., Rodil, R., Montes, R., Quintana, J.B., Vilar, J.P. 2022. Tracking pollutants in a municipal sewage network impairing the operation of a wastewater treatment plant. Science of The Total Environment, 817. https://doi.org/10.1016/j.scitotenv.2021.152518
  • 37. Saidi, T., Moufid, M., de Jesus Beleño-Saenz, K., Welearegay, T.G., El Bari, N., Lisset Jaimes-Mogollon, A., Ionescu, R., Bourkadi, J.E., Benamor, J., El Ftouh, M., Bouchikhi, B. 2020. Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS. Sensors and Actuators B: Chemical, 311. https://doi.org/10.1016/j.snb.2020.127932
  • 38. Smulko, J., Chludziński, T., Majchrzak, T., Kwiatkowski, A., Borys, S., Lisset Jaimes-Mogollón, A., Manuel Durán-Acevedo, C., Geovanny Perez-Ortiz, O., Ionescu, R. 2022. Analysis of exhaled breath for dengue disease detection by low-cost electronic nose system. Measurement, 190. https://doi.org/10.1016/j.measurement.2022.110733
  • 39. Szynkowska, M., Maćkiewicz, E., Węglińska, A., Paryjczak, T. 2009. Odorous emission. An Environmental Protection issue. (Odory. Aktualny problem w ochronie środowiska). Przemysł Chemiczny, 88(6), 712–720.
  • 40. Tan, J., Xu, J. 2020. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/10.1016/j.aiia.2020.06.003
  • 41. Tansel, B., Inanloo, B. 2019. Odor impact zones around landfills: Delineation based on atmospheric conditions and land use characteristics. Waste Management, 88, 39–47. https://doi.org/10.1016/j.wasman.2019.03.028
  • 42. Talaiekhozani, A., Nematzadeh, S., Eskandari, Z., Dehkordi, A.A., Rezania, S. 2018. Gaseous emissions of landfill and modeling of their dispersion in the atmosphere of Shahrekord, Iran. Urban Climate, 24, 852–862. https://doi.org/10.1016/j.uclim.2017.10.005
  • 43. Thetkathuek, A., Jaidee, W., Saowakhontha, S., Ekburanawat, W. 2015. Neuropsychological Symptoms among Workers Exposed to Toluene and Xylene in Two Paint Manufacturing Factories in Eastern Thailand. Advances in Preventive Medicine. 10.1155/2015/183728
  • 44. Wysocka, I., Gębicki, J., Namieśnik, J. 2019. Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26(10), 9409–9434. https://doi.org/10.1007/s11356-019-04195-1
  • 45. Yao, H., Feilberg, A. 2015. Characterization of photocatalytic degradation of odorous compounds associated with livestock facilities by means of PTR-MS. Chemical Engineering Journal, 277, 341–351. https://doi.org/10.1016/j.cej.2015.04.094
  • 46. Zarra, T., Naddeo, V., Belgiorno, V., Reiser, M., Kranert, M. 2008. Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Science & Technology, 58(1), 89–94. https://doi.org/10.2166/wst.2008.330
  • 47. Zenz, C., Dickerson, O.B., Horvath, E.P. 1994. Occupational Medicine. 3rd ed. St. Louis, MO.
  • 48. Zhang, C., Wu, J., Wang, R., Ma, E., Wu, L., Bai, J., Wang, J. 2021. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification. Green Energy & Environment, 6(3), 339–349. https://doi.org/10.1016/J.GEE.2020.08.001
  • 49. Zhang, Y., Niang, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G., Shang, X. 2021. Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, 771–780. https://doi.org/10.1016/j.wasman.2021.03.055
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88489f50-4f50-434d-be86-8577a0d6b31c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.