Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurate forecasting of municipal solid waste (MSW) generation is important for the planning, operation and optimization of municipal waste management system. However, it’s not easy task due to dynamic changes in waste volume, its composition or unpredictable factors. Initially, mainly conventional and descriptive statistical models of waste generation forecasting with demographic and socioeconomic factors were used. Methods based on machine learning or artificial intelligence have been widely used in municipal waste projection for several years. This study investigates the trend of municipal waste accumulation rate and its relation to personal consumption expenditures based on the yearly data achieved from Local Data Bank (LDB) driven by Polish Statistical Office. The effect of personal consumption expenditures on the municipal waste accumulation rate was analysed by using the vector autoregressive model (VAR). The results showed that such method can be successfully used for this purpose with an approximate level of 2.3% Root Mean Square Error (RMSE).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
150--156
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dabrowskiego73, 42-200 Czestochowa, Poland
Bibliografia
- 1. Abbasi, M., Abduli, M.A., Omidvar, B., Baghvand, A., 2014, Results uncertainty of support vector machine and hybrid of wavelet transform-support vector machine models for solid waste generation forecasting. Environmental Progress Sustainable Energy, 33, 220-228, DOI: 10.1002/ep.1174710.1002/ep.11747
- 2. Abbasi, M., El Hanandeh, A., 2016, Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste management, 56, 13-22, DOI: 10.1016/j.wasman.2016.05.01810.1016/j.wasman.2016.05.01827297046
- 3. Abdoli, M.A, Falahnezhad, M., Behboudian, S., 2011, Multivariate econometric approach for solid waste generation modeling: impact of climate factors. Environmental Engineering Science, 28, 9, 627-633, DOI: 10.1089/ees.2010.023410.1089/ees.2010.0234
- 4. Aldridge, A., 2003, Consumption. Blackwell Publishers, New Jersey, USA.
- 5. Athanasopoulos, G., Poskitt, D. S., Vahid, F., 2012. Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econometric Reviews, 31(1), 60-83, DOI: 10.1080/07474938.2011.60708810.1080/07474938.2011.607088
- 6. Beigl, P., Lebersorger, S., Salhofer, S., 2008, Modelling municipal waste generation: a review. Waste management, 28, 1, 200-214, DOI: 10.1016/j.wasman.2006.12.01110.1016/j.wasman.2006.12.01117336051
- 7. Benitez, S.O., Lozano-Olvera, G., Morelos, R.A., de Vega, C.A., 2008. Mathematical modeling to predict residential solid waste generation. Waste Management, 28, 7-13, DOI: 10.1016/j.wasman.2008.03.02010.1016/j.wasman.2008.03.02018583125
- 8. Blue, S., 2017. The sociology of consumption. The Cambridge Handbook of Sociology, Volume 2: Specialty and Interdisciplinary Studies, Cambridge University Press.
- 9. Central Statistical Office of Poland, 2021. The situation of households in 2020 on the basis of results of the Household Budget Survey. Warsaw.
- 10. Denafas, G., Ruzgas, T., Martuzevičius, D., Shmarin, S., Hoffmann, M., Mykhaylenko, V., Ogorodnik, S., Romanov, M., Neguliaeva, E., Chusov, A., Turkadze, T., Bochoidze, I., Ludwig, C., 2014. Seasonal variation of municipal solid waste generation and composition in four East European cities. Resources. Conservation and Recycling, 89, 22-30, DOI: 10.1016/j.resconrec.2014.06.00110.1016/j.resconrec.2014.06.001
- 11. Drachal, K., 2021. Forecasting crude oil real prices with averaging time-varying VAR models. Resources Policy, 74, DOI: 10.1016/j.resourpol.2021.10224410.1016/j.resourpol.2021.102244
- 12. Friedman, J., Hastie, T., Tibshirani, R., 2001. The elements of statistical learning. Springer series in statistics.10.1007/978-0-387-21606-5
- 13. Gupta, R., Sun, X., 2020. Forecasting economic policy uncertainty of BRIC countries using Bayesian VARs. Economics Letters, 186, DOI: 10.1016/j.econlet.2019.10867710.1016/j.econlet.2019.108677
- 14. Hyndman, R.J., Athanasopoulos, G., 2021. Forecasting principles and practice, 3rd edition, OTexts: Melbourne, Australia.
- 15. Khajevand, N., Tehrani, R., 2019. Impact of population change and unemployment rate on Philadelphias’s waste disposal. Waste management, 100, 29, 278-286, DOI: 10.1016/j.wasman.2019.09.02410.1016/j.wasman.2019.09.02431563841
- 16. Kolekar, K.A., Hazra, T., Chakrabarty, S.N., 2016. A review on prediction of municipal solid waste generation models. Procedia Environmental Sciences, 35, 238-244, DOI: 10.1016/j.proenv.2016.07.08710.1016/j.proenv.2016.07.087
- 17. Liu, J., Li, Q., Gu, W., Wang, C., 2019. The Impact of Consumption Patterns on the Generation of Municipal Solid Waste in China: Evidences from Provincial Data. International Journal of Environmental Reserarch and Public Health, 16(10), 1717, DOI: 10.3390/ijerph1610171710.3390/ijerph16101717657300431100789
- 18. Owusu-Sekyere, E., Harris, E., Bonayah, E., 2013. Forecasting and planning for solid waste generation in the Kumasi Metropolitan Area of Ghana: an ARIMA time series approach. International Journal of Sciences, 2, 69-83.10.11648/j.ijepp.20140201.12
- 19. Pai, R., Rodriguez-Lewlyn, L.R., Oommen-Mathew, A., Hebbar, S., 2014. Impact of urbanization on municipal solid waste management: a system dynamics approach. International Journal of Energy and Environmental Engineering, 2, 1, 31-37.
- 20. Sha’Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S., 2007. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria. Waste management, 27, 352-358, DOI: 10.1016/j.wasman.2006.02.00810.1016/j.wasman.2006.02.00816678398
- 21. Xu, L., Gao, P., Cui, S., Liu, C., 2013. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Management, 33, 1324-1331, DOI: 10.1016/j.wasman.2013.02.01210.1016/j.wasman.2013.02.01223490364
- 22. Zhang, L., Yuan, Z., Bi J., Huang, L., 2012. Estimating future generation of obsolete household appliances in China. Waste Management and Research, 30, DOI: 10.1177/0734242X1244123810.1177/0734242X1244123822517530
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88483f0a-c512-4257-a119-b793b4035a98