PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power system oscillation damping controller design: a novel approach of integrated HHO-PSO algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hybridization of a recently suggested Harris hawk’s optimizer (HHO) with the traditional particle swarm optimization (PSO) has been proposed in this paper. The velocity function update in each iteration of the PSO technique has been adopted to avoid being trapped into local search space with HHO. The performance of the proposed Integrated HHO-PSO (IHHOPSO) is evaluated using 23 benchmark functions and compared with the novel algorithms and hybrid versions of the neighbouring standard algorithms. Statistical analysis with the proposed algorithm is presented, and the effectiveness is shown in the comparison of grey wolf optimization (GWO), Harris hawks optimizer (HHO), barnacles matting optimization (BMO) and hybrid GWO-PSO algorithms. The comparison in convergence characters with the considered set of optimization methods also presented along with the boxplot. The proposed algorithm is further validated via an emerging engineering case study of controller parameter tuning of power system stability enhancement problem. The considered case study tunes the parameters of STATCOM and power system stabilizers (PSS) connected in a sample power network with the proposed IHHOPSO algorithm. A multi-objective function has been considered and different operating conditions has been investigated in this papers which recommends proposed algorithm in an effective damping of power network oscillations.
Rocznik
Strony
553--591
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wzory
Twórcy
  • Department of Electrical Engineering, B.I.T. Sindri, Dhanbad, Jharkhand, India
autor
  • Department of Electrical Engineering, B.I.T. Sindri, Dhanbad, Jharkhand, India
Bibliografia
  • [1] M. Črepinšek, S.-H. Liu, and L. Mernik: A note on teaching-learning based optimization algorithm. Information Sciences, 212 (2012), 79-93, DOI: 10.1016/j.ins.2012.05.009
  • [2] Anita and A. Yadav: AEFA: Artificial electric field algorithm for global optimization. Swarm and Evolutionary Computation, 48 (2019), 93-108, DOI: 10.1016/j.swevo.2019.03.013.
  • [3] R. Devarapalli and B. Bhattacharyya: A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system. Optimal Control Applications and Methods, 41(4), (2020), 1143-1159, DOI: 10.1002/oca.2591.
  • [4] M. Jain, V. Singh, and A. Rani: A novel nature-inspired algorithm for optimization: Squirrel search algorithm, Swarm and Evolutionary Computation, 44 (2019), 148-175, DOI: 10.1016/j.swevo.2018.02.013.
  • [5] A.E. Eiben and J.E. Smith: What is an Evolutionary Algorithm? In Introduction to Evolutionary Computing, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, 25-48, DOI: 10.1007/978-3-662-44874-8_3.
  • [6] A. Kaveh and M. Khayatazad: A new meta-heuristic method: Ray Optimization. Computers & Structures, 112-113, (2012), 283-294, DOI: 10.1016/j.compstruc.2012.09.003.
  • [7] P.J.M. van Laarhoven and E.H.L. Aarts: Simulated annealing. In Simulated Annealing: Theory and Applications, P.J.M. van Laarhoven and E.H.L. Aarts, Eds. Dordrecht: Springer Netherlands, 1987, 7-15, DOI: 10.1007/978-94-015-7744-1_2.
  • [8] A genetic algorithm tutorial. SpringerLink. https://link.springer.com/article/10.1007/BF00175354 (accessed Mar. 20, 2020).
  • [9] J. Kennedy and R. Eberhart: Particle Swarm Optimization. Proc. of ICNN’95 International Conference on Neural Networks, 4 (1995), 1942-1948.
  • [10] M. Neshat, G. Sepidnam, M. Sargolzaei, and A.N. Toosi: Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), (2014), 965-997, DOI: 10.1007/s10462-012-9342-2.
  • [11] M. Dorigo, M. Birattari, and T. Stutzle: Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), (2006), 28-39, DOI: 10.1109/MCI.2006.329691.
  • [12] M. Roth and S. Wicker: Termite: ad-hoc networking with stigmergy. In GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), 5 (2003), 2937-2941, DOI: 10.1109/GLOCOM.2003.1258772
  • [13] D. Karaboga and B. Akay: A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), (2009), 108-132, DOI: 10.1016/j.amc.2009.03.090.
  • [14] A. Mucherino and O. Seref: Monkey search: a novel metaheuristic search for global optimization. AIP Conference Proceedings, 953(1), (2007), 162-173, DOI: 10.1063/1.2817338.
  • [15] E. Atashpaz-Gargari and C. Lucas: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation, (2007), 4661-4667, DOI: 10.1109/CEC.2007.4425083.
  • [16] D. Simon: Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), (2008), 702-713, DOI: 10.1109/TEVC.2008.919004.
  • [17] X.-S. Yang: Firefly algorithm. Stochastic, test, functions and design optimisation. arXiv:1003.1409 [math], Mar. 2010, Accessed: Mar. 20, 2020. [Online]. Available: http://arxiv.org/abs/1003.1409.
  • [18] K.M. Gates and P.C.M. Molenaar: Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), (2012), 310-319, DOI: 10.1016/j.neuroimage.2012.06.026.
  • [19] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi: GSA: A gravitational search algorithm. Information Sciences, 179(13), (2009), 2232-2248, DOI: 10.1016/j.ins.2009.03.004.
  • [20] Y. Tan and Y. Zhu: Fireworks Algorithm for Optimization. In: Tan Y., Shi Y., Tan K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, 6145, Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-13495-1_44.
  • [21] X.-S. Yang: Bat algorithm for multi-objective optimisation. arXiv: 1203. 6571 [math], Mar. 2012, Accessed: Mar. 20, 2020. [Online]. Available: http://arxiv.org/abs/1203.6571.
  • [22] Ling Wang, Xiao-long Zheng, and Sheng-yao Wang: A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem. Knowledge-Based Systems, 48 17-23, (2013), DOI: 10.1016/j.knosys.2013.04.003
  • [23] X.-S. Yang: Flower Pollination Algorithm for Global Optimization. In Unconventional Computation and Natural Computation, Berlin, Heidelberg, 2012, 240-249, DOI: 10.1007/978-3-642-32894-7_27.
  • [24] G.-G. Wang, L. Guo, A.H. Gandomi, G.-S. Hao, and H. Wang: Chaotic Krill Herd algorithm. Information Sciences, 274 (2014), 17-34, DOI: 10.1016/j.ins.2014.02.123.
  • [25] A. Kaveh and N. Farhoudi: A new optimization method: Dolphin echolocation. Advances in Engineering Software, 59 (2013), 53-70, DOI: 10.1016/ j.advengsoft.2013.03.004.
  • [26] S. Mirjalili, S.M. Mirjalili, and A. Lewis: GreyWolf optimizer. Advances in Engineering Software, 69 (2014), 46-61, DOI: 10.1016/j.advengsoft. 2013.12.007.
  • [27] A. Hatamlou: Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222 (2013), 175-184, DOI: 10.1016/ j.ins.2012.08.023.
  • [28] A. Sadollah, A. Bahreininejad, H. Eskandar and M. Hamdi: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problem. Applied Soft Computing, 13(5), (2013), 2592-2612, DOI: 10.1016/j.asoc.2012.11.026.
  • [29] S. Mirjalili: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), (2016), 1053-1073, DOI: 10.1007/s00521-015-1920-1.
  • [30] S. Mirjalili: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89 (2015), 228-249, DOI: 10.1016/j.knosys.2015.07.006.
  • [31] F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, and S. Mirjalili: Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101 (2019), 646-667, DOI: 10.1016/j.future.2019.07.015.
  • [32] S. Mirjalili: The ant lion optimizer. Advances in Engineering Software, 83 (2015), 80-98, DOI: 10.1016/j.advengsoft.2015.01.010.
  • [33] H. Shareef, A.A. Ibrahim, and A.H. Mutlag: Lightning search algorithm. Applied Soft Computing, 36 (2015), 315-333, DOI: 10.1016/j.asoc.2015.07.028.
  • [34] S.A. Uymaz, G. Tezel, and E. Yel: Artificial algae algorithm (AAA) for nonlinear global optimization. Applied Soft Computing, 31 (2015), 153-171, DOI: 10.1016/j.asoc.2015.03.003.
  • [35] M.D. Li, H. Zhao, X.W. Weng, and T. Han: A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92 (2016), 65-88, DOI: 10.1016/j.advengsoft.2015.11.004.
  • [36] O. Abedinia, N. Amjady, and A. Ghasemi: A new metaheuristic algorithm based on shark smell optimization. Complexity, 21(5), (2016), 97-116, DOI: 10.1002/cplx.21634.
  • [37] S. Mirjalili, S.M. Mirjalili, and A. Hatamlou: Multi-Verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), (2016), 495-513, DOI: 10.1007/s00521-015-1870-7.
  • [38] S. Mirjalili and A. Lewis: The whale optimization algorithm. Advances in Engineering Software, 95 (2016), 51-67, DOI: 10.1016/j.advengsoft.2016.01.008.
  • [39] A. Askarzadeh: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169 (2016), 1-12, DOI: 10.1016/j.compstruc.2016.03.001.
  • [40] T. Wu, M. Yao, and J. Yang: Dolphin swarm algorithm. Frontiers of Information Technology & Electronic Engineering, 17(8), (2016), 717-729, DOI: 10.1631/FITEE.1500287.
  • [41] S. Mirjalili: SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96 (2016), 120-133, DOI: 10.1016/ j.knosys.2015.12.022.
  • [42] A. Kaveh and A. Dadras: A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Advances in Engineering Software, 110, (2017), 69-84, DOI: 10.1016/j.advengsoft.2017.03.014.
  • [43] M.M. Mafarja, I. Aljarah, A. Asghar Heidari, A.I. Hammouri, H. Faris, Ala’M. Al-Zoubi, and S. Mirjalili: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145 (2018), 25-45, DOI: 10.1016/j.knosys.2017.12.037.
  • [44] A. tabari and A. Ahmad: A new optimization method: Electro-search algorithm. Computers and Chemical Engineering, 103 (2017), 1-11, DOI: 10.1016/j.compchemeng.2017.01.046.
  • [45] G. Dhiman and V. Kumar: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114 (2017), 48-70, DOI: 10.1016/j.advengsoft.2017.05.014.
  • [46] S.-A. Ahmadi: Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems. Neural Comput and Applications, 28(S1), (2017), 233-244, DOI: 10.1007/s00521-016-2334-4.
  • [47] A.F. Nematollahi, A. Rahiminejad, and B. Vahidi: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Applied Soft Computing, 59 (2017), 596-621, DOI: 10.1016/j.asoc.2017.06.033.
  • [48] R.A. Ibrahim, A.A. Ewees, D. Oliva, M. Abd Elaziz, and S. Lu: Improved salp swarm algorithm based on particle swarm optimization for feature selection. Journal of Ambient Intelligence and Humanized Computing, 10(8), (2019), 3155-3169, DOI: 10.1007/s12652-018-1031-9.
  • [49] E. Jahani and M. Chizari: Tackling global optimization problems with a novel algorithm - Mouth brooding fish algorithm. Applied Soft Computing, 62 (2018), 987-1002, DOI: 10.1016/j.asoc.2017.09.035.
  • [50] X. Qi, Y. Zhu, and H. Zhang: A new meta-heuristic butterfly-inspired algorithm. Journal of Computational Science, 23 (2017), 226-239, DOI: 10.1016/j.jocs.2017.06.003.
  • [51] S. Mirjalili: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89 (2015), 228-249, DOI: 10.1016/j.knosys.2015.07.006.
  • [52] M. Dorigo, V. Maniezzo, and A. Colorni: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), (1996), 29-41, DOI: 10.1109/3477.484436.
  • [53] S. Mirjalili and S.Z.M. Hashim: A new hybrid PSOGSA algorithm for function optimization. In 2010 International Conference on Computer and Information Application, (2010), 374-377, DOI: 10.1109/ICCIA.2010.6141614.
  • [54] F.A. Şenel, F. Gökçe, A.S. Yüksel, and T. Yiğit: A novel hybrid PSO-GWO algorithm for optimization problems. Engineering with Computers, 35(4), 1359-1373, DOI: 10.1007/s00366-018-0668-5.
  • [55] D.T. Bui, H. Moayedi, B. Kalantar, and A. Osouli: Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors, 19(14), (2019), 3590, DOI: 10.3390/s19163590.
  • [56] H. Chen, S. Jiao, M. Wang, A.A. Heidari, and X. Zhao: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. Journal of Cleaner Production, 244 (2020), p. 118778, DOI: 10.1016/j.jclepro.2019.118778.
  • [57] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen: Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97 (2019), 849-872, DOI: 10.1016/j.future.2019.02.028.
  • [58] M. Jamil and X.-S. Yang: A literature survey of benchmark functions for global optimization problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), (2013), 150, DOI: 10.1504/IJMMNO.2013.055204.
  • [59] A. Kaveh and S. Talatahari: A novel heuristic optimization method: charged system search. Acta Mechanica, 213(3-4), (2010), 267-289, DOI: 10.1007/s00707-009-0270-4.
  • [60] J. Luo and B. Shi: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Applied Intelligence, 49(5), (2000), 1982-2000, DOI: 10.1007/s10489-018-1362-4.
  • [61] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen: Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97 (2019), 849-872, DOI: 10.1016/j.future.2019.02.028.
  • [62] P. Pruski and S. Paszek: Location of generating units most affecting the angular stability of the power system based on the analysis of instantaneous power waveforms. Archives of Control Sciences, 30(2), (2020), 273-293, DOI: 10.24425/acs.2020.133500.
  • [63] M.M. Hossain and A.Z. Khurshudyan: Heuristic control of nonlinear power systems: Application to the infinite bus problem. Archives of Control Sciences, 29(2), (2019), 279-288, DOI: 10.24425/acs.2019.129382.
  • [64] R. Devarapalli and B. Bhattacharyya: A framework for H2/H? synthesis in damping power network oscillations with STATCOM. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44 (2020), 927-948, DOI: 10.1007/s40998-019-00278-4.
  • [65] G. Gurrala and I. Sen: Power system stabilizers design for interconnected power systems. IEEE Transactions on Power Systems, 25(2), (2010), 1042-1051, DOI: 10.1109/TPWRS.2009.2036778.
  • [66] R.K. Varma: Introduction to FACTS controllers. In 2009 IEEE/PES Power Systems Conference and Exposition, (2009), 1-6, DOI: 10.1109/PSCE.2009.4840114.
  • [67] P. Kundur: Power System Stability and Control. Tata McGraw-Hill Education, 1994.
  • [68] M. Belazzoug, M. Boudour, and K. Sebaa: FACTS location and size for reactive power system compensation through the multi-objective optimization. Archives of Control Sciences, 20(4), (2010), 473-489, DOI: 10.2478/v10170-010-0027-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88476e6e-d670-4271-a045-ddcad9df561b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.