Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Maintenance can improve a system’s reliability in a long operation period or when a component has failed. The reliability modeling method that uses the stochastic process degradation model to describe the system degradation process has been widely used. However, the existing reliability models established using stochastic processes only consider the internal degradation process, and do not fully consider the impact of external random shocks on their reliability modeling. Furthermore, the existing theory of importance does not consider the actual factors of maintenance cost. In this paper, based on the reliability modeling of random processes, the degradation rate under the influence of random shocks is introduced into the time scale function to solve the impact of random shocks on product reliability, and two cost importance measures are proposed to guide the maintenance selection of the components under limited resources in the system. Finally, a subsystem of an aircraft hydraulic system is analyzed to verify the proposed method’s performance.
Czasopismo
Rocznik
Tom
Strony
art. no. 162011
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
autor
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
autor
- School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China
autor
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
- Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
autor
- Engineering Technology Department, Old Dominion University, Norfolk, VA 23529, United States
Bibliografia
- 1. Alvarez C, Lopez-Campos M, Stegmaier R, Mancilla-David F, Schurch R, Angulo A. A Condition-Based Maintenance Model Including Resource Constraints on the Number of Inspections. IEEE Transactions on Reliability 2021 69:1165-76. https://doi.org/10.1109/TR.2019.2955558
- 2. Bian L, Wang G, Liu P. Reliability analysis for multi-component systems with interdependent competing failure processes. Applied Mathematical Modelling 2021 94:446-59. https://doi.org/10.1016/j.apm.2021.01.009
- 3. Cai B, Liu Y, Fan Q, Zhang Y, Liu Z, Yu S, Ji R. Multi-source information fusion-based fault diagnosis of ground-source heat pump using Bayesian network. Appl Energy 2014 114:1–9. https://doi.org/10.1016/j.apenergy.2013.09.043
- 4. Cai B, Huang L, Xie M. Bayesian networks in fault diagnosis. IEEE Trans Ind Inform 2017 13:2227–40. https://doi.org/10.1109/TII.2017.2695583
- 5. Cai B, Kong X, Liu Y, Lin J, Yuan X, Xu H, Ji R. Application of Bayesian networks in Reliability Evaluation. IEEE Trans Ind Inform 2019 15:2146-57. https://doi.org/10.1109/TII.2018.2858281
- 6. Cai B, Fan H, Shao X, Liu Y, Liu G, Liu Z, Ji R. Remaining useful life re-prediction methodology based on Wiener process: Subsea Christmas tree system as a case study. Computers & Industrial Engineering 2021 151:106983.
- 7. Cai B, Zhang Y, Wang H, Liu Y, Ji R, Gao C, Kong X, Liu J. Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance. Reliab Eng Syst Saf 2021 209:107464.
- 8. Cai B, Liu Y, Liu Z, Chang Y, Jiang L. Availability-Based Engineering Resilience Metric and Its Corresponding Evaluation Methodology. In: Bayesian Networks for Reliability Engineering. Springer, Singapore 2020 239-57. https://doi.org/10.1007/978-981-13-6516-4_11
- 9. Cao Y. Modeling the effects of dependence between competing failure processes on the condition-based preventive maintenance policy. Applied Mathematical Modelling 2021 99:400-17. https://doi.org/10.1016/j.apm.2021.06.027
- 10. Che H, Zeng S, Guo J, Wang Y. Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process. Reliab Eng Syst Saf 2018 180:168–78. https://doi.org/10.1016/j.ress.2018.07.018
- 11. Duan R, Lin Y, Zeng Y. Fault diagnosis for complex systems based on reliability analysis and sensors data considering epistemic uncertainty. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2018 20:558-66. https://doi.org/10.1016/j.ress.2018.07.018
- 12. Dui H, Zhang C, Tian T, Wu S. Different costs-informed component preventive maintenance with system lifetime changes. Reliab Eng Syst Saf 2022 228:108755.
- 13. Feng Q, Hai X, Huang B, Zuo Z, Ren Y, Sun B, Yang D. An agent-based reliability and performance modeling approach for multistate complex human machine systems with dynamic behavior. IEEE Access 2019 7:135300-11. https://doi.org/10.1109/ACCESS.2019.2941508
- 14. Feng Q, Zhao X, Fan D, Cai B, Liu Y, Ren Y. Resilience design method based on meta-structure: a case study of offshore wind farm. Reliab Eng Syst Saf 2019 186:232–44. https://doi.org/10.1016/j.ress.2019.02.024
- 15. Gao H, Cui L, Qiu Q. Reliability modeling for degradation-shock dependence systems with multiple species of shocks. Reliab Eng Syst Saf 2019 185:133–43. https://doi.org/10.1016/j.ress.2018.12.011
- 16. Jiang P, Wang B, Wang X, Zhou Z. Inverse Gaussian process based reliability analysis for constant-stress accelerated degradation data. Applied Mathematical Modelling 2022 105:137-48. https://doi.org/10.1016/j.apm.2021.12.003
- 17. Khatab A, Diallo C, Aghezzaf E, Venkatadri U. Integrated production quality and condition-based maintenance optimisation for a stochastically deteriorating manufacturing system. International Journal of Production Research 2019 57:2480-97. https://doi.org/10.1080/00207543.2018.1521021
- 18. Li Y, Peng R. Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration. Reliab Eng Syst Saf 2014 127:47-57. https://doi.org/10.1016/j.ress.2014.03.005
- 19. Levitin G, Xing L, Dai Y. Optimal non-periodic replacement and reactivation in standby systems with protection and maintenance options. Computers and Industrial Engineering 2021 155:107178.
- 20. Levitin G, Xing L, Xiang Y. Optimizing preventive replacement schedule in standby systems with time consuming task transfers. Reliab Eng Syst Saf 2021 205:107227.
- 21. Li Y, Ding Y, Zio E. Random Fuzzy Extension of the Universal Generating Function Approach for the Reliability Assessment of Multi-State Systems Under Aleatory and Epistemic Uncertainties. IEEE Trans Rel 2014 63:13-25. https://doi.org/10.1109/TR.2014.2299031
- 22. Mlynarski S, Pilch R, Smolnik M, Szybka J, Wiazania G. A Method for rapid evaluation of k-out-of-n systems reliability. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2019 21:170-6. https://doi.org/10.17531/ein.2019.1.20
- 23. Si S, Dui H, Cai Z, Sun S. The integrated importance measure of multi-state coherent systems for maintenance processes. IEEE Trans Rel 2012 61:266–73. https://doi.org/10.1109/TR.2012.2192017
- 24. Si S, Dui H, Cai Z, Sun S, Zhang Y. Joint integrated importance measure for multistate transition systems. Commun Stat Theory Methods 2012 41:3846–62. https://doi.org/10.1080/03610926.2012.688158
- 25. Tang D, Sheng W, Yu J. Dynamic condition-based maintenance policy for degrading systems described by a random-coefficient autoregressive model: A comparative study. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018 20:590–601. https://doi.org/10.17531/ein.2018.4.10
- 26. Tanner D, Dugger M. Wear Mechanisms in a Reliability Methodology. Proceedings of SPIE 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II 2003 22-40. https://doi.org/10.1117/12.476345
- 27. Wu S , Coolen F. A cost-based importance measure for system components: an extension of the Birnbaum importance. Eur J Oper Res 2013 225:189–95. https://doi.org/10.1016/j.ejor.2012.09.034
- 28. Wang J, Li Z, Bai G, Zuo M. An improved model for dependent competing risks considering continuous degradation and random shocks. Reliab Eng Syst Saf 2020 193:106641.
- 29. Xiao L, Song S, Chen X, Coit D. Joint optimization of production scheduling and machine group preventive maintenance. Reliab Eng Syst Saf 2016 146:68–78. https://doi.org/10.1016/j.ress.2015.10.013
- 30. Xing L. Reliability in Internet of Things: Current Status and Future Perspectives. IEEE Internet of Things Journal 2020 7:6704-21. https://doi.org/10.1109/JIOT.2020.2993216
- 31. Xing L. Cascading Failures in Internet of Things: Review and Perspectives on Reliability and Resilience. IEEE Internet of Things Journal 2021 8:44-64. https://doi.org/10.1109/JIOT.2020.3018687
- 32. Zhai Q, Yang J, Xie M, Zhao Y. Generalized moment-independent importance measures based on Minkowski distance. European Journal of Operational Research 2014 239:449–455. https://doi.org/10.1016/j.ejor.2014.05.021
- 33. Zhang C, Qian Y, Dui H, Wang S, Chen R, Tomovic M. Opportunistic maintenance strategy of a Heave Compensation System for expected performance degradation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021 23:512–521. https://doi.org/10.17531/ein.2021.3.12
- 34. Zhang C, Zhang Y, Dui H, Wang S, Tomovic M. Importance measure-based maintenance strategy considering maintenance costs. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022 24:15–24. https://doi.org/10.17531/ein.2022.1.3
- 35. Zhang Y, Zhang C, Wang S, Chen R, Tomovic M. Performance Degradation Based on Importance Change and Application in Dissimilar Redundancy Actuation System. Mathematics 2022 10:843. https://doi.org/10.3390/math10050843
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8846cb4f-4212-472c-b58e-2aaa67bd7bab