PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the results for calculation of vortex currents after sudden expansion of the pipe with different diameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a numerical study of a sharply expanding highly swirling flow is carried out using v2-f models based on the Comsol Multiphysics 5.6 software package and a two-fluid turbulence model. The results obtained are compared with known experimental data with different pipe diameters. The purpose of this work is to test the ability of models to describe anisotropic turbulence. It is shown that the two-fluid model is more suitable for studying such flows.
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
  • Plekhanov Russian University of Economics in Tashkent, 3 Shakhriabad, Tashkent 100164, UZBEKISTAN
  • Plekhanov Russian University of Economics in Tashkent, 3 Shakhriabad, Tashkent 100164, UZBEKISTAN
  • Plekhanov Russian University of Economics in Tashkent, 3 Shakhriabad, Tashkent 100164, UZBEKISTAN
  • Plekhanov Russian University of Economics in Tashkent, 3 Shakhriabad, Tashkent 100164, UZBEKISTAN
  • Plekhanov Russian University of Economics in Tashkent, 3 Shakhriabad, Tashkent 100164, UZBEKISTAN
Bibliografia
  • [1] Abramovich G.N. (1984): Theory of Turbulent Jets.– Moscow, "Nauka", p.718.
  • [2] Malikov Z.M. (2020): Mathematical model of turbulence based on the dynamics of two fluids.– Applied Mathematic Modeling, No.82, pp.409-436.
  • [3] Smirnov P.E. (2006): Testing the v2-f-model of turbulence in the calculation of flow and heat transfer in a channel with a sudden expansion.– Inzhenerno-Fizicheskij Zhurnal, vol.79, No.4, p.38.
  • [4] Patankar S.V. (1980): Numerical Heat Transfer and Fluid Flow.– Taylor and Francis, ISBN 978-0-89116-522-4, p.214.
  • [5] Dellenback P.A., Metzger D.R. and Neitzel G.P. (1988): Measurements in turbulent swirling flow through an abrupt expansion.– AIAA J., vol.26, No.6, pp.669-681.
  • [6] Anderson D.A., Tannehill J.C. and Pletcher R.H. (1990): Computational fluid mechanics and heat transfer.– M.: Mir, vol.1, pp-384, vol.2, pp-392.
  • [7] Mises R.V. (1927): Remarks on hydrodynamics.– NASA Transl. into english from Z. Angew. Math. Mech. (Berlin), vol.7, pp. 425-431.
  • [8] Bradshaw P., Ferriss D.H. and Atwell N.P. (1967): Calculation of boundary layer development using the turbulent energy equation.– J. Fluid Mech., vol.28, pp.593-616.
  • [9] Spalart, P.R. and Allmaras, S.R. (1992): A One-Equation Turbulence Model for Aerodynamics Flows.– Boeing Commercial Airplane Group, Seattle, Washington.
  • [10] Volk B.L., Lagoudas D.C., Chen Y.C. and Whitley K.S. (2010): Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization.– Smart Materials and Structures, vol.19, No.7, p.10, DOI: 10.1088/0964-1726/19/7/075005.
  • [11] Ratajczak M., Ptak M., Chybowski L., Gawdzińska K. and Będziński R. (2019): Material and structural modeling aspects of brain tissue deformation under dynamic loads.– Materials, MDPI, vol.12, No.2, Article number 271, p.13, doi: 10.3390/ma120271.
  • [12] Reparaz J.S., Pereira da Silva K., Romero A.H., Serrano J., Wagner M.R., Callsen G., Choi S.J., Speck J.S. and Goñi A.R. (2018): Comparative study of the pressure dependence of optical-phonon transverse-effective charges and linewidths in wurtzite.– In N. Phys. Rev. B, vol.98, Article number 165204, DOI: https://doi.org/10.1103/PhysRevB.98.165204.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88387a01-3633-41b8-9379-3890f4745a09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.