PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generation of H2 on board LNG vessels for consumption in the propulsion system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present, LNG vessels without reliquefaction plants consume the BOG (boil-off gas) in their engines and the excess is burned in the gas combustion unit without recovering any of its energy content. Excess BOG energy could be captured to produce H2, a fuel with high energy density and zero emissions, through the installation of a reforming plant. Such H2 production would, in turn, require on-board storage for its subsequent consumption in the propulsion plant when navigating in areas with stringent anti-pollution regulations, thus reducing CO2 and SOX emissions. This paper presents a review of the different H2 storage systems and the methods of burning it in propulsion engines, to demonstrate the energetic viability thereof on board LNG vessels. Following the analysis, it is identified that a pressurised and cooled H2 storage system is the best suited to an LNG vessel due to its simplicity and the fact that it does not pose a safety hazard. There are a number of methods for consuming the H2 generated in the DF engines that comprise the propulsion plant, but the use of a mixture of 70% CH4-30% H2 is the most suitable as it does not require any modifications to the injection system. Installation of an on-board reforming plant and H2 storage system generates sufficient H2 to allow for almost 3 days’ autonomy with a mixture of 70%CH4-30%H2. This reduces the engine consumption of CH4 by 11.38%, thus demonstrating that the system is not only energy-efficient, but lends greater versatility to the vessel.
Słowa kluczowe
Rocznik
Tom
Strony
83--95
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • University of A Coruńa – Energy Engineering Research Group – School of Nautical Science and Marine Engineering, c/Paseo de Ronda, 51, 15011 A Coruńa, Spain
  • University of A Coruńa – Energy Engineering Research Group – School of Nautical Science and Marine Engineering, c/Paseo de Ronda, 51, 15011 A Coruńa, Spain
  • University of A Coruńa – Energy Engineering Research Group – School of Nautical Science and Marine Engineering, c/Paseo de Ronda, 51, 15011 A Coruńa, Spain
  • Department of Mechanical Engineering, University of La Rioja, C/Luís de Ulloa, 20, 26004 Logrońo, Spain
Bibliografia
  • 1. Aguilera R. F., Aguilera R. (2012): World natural gas endowment as a bridge towards zero carbon emissions. Technol. Forecast Soc. Change, 79(3), 579-86.
  • 2. Air Liquide, www.airliquide.com [accessed 20.11.16].
  • 3. Arias Fernández I., Romero Gómez M., Baalińa Insua A. (2017): Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 1395-1411.
  • 4. Arias Fernández I., Romero Gómez M., Romero Gómez J., López-González L. M. (2017): H2 production by the steam reforming of excess boil off gas on LNG vessels. Energy Conversion and Management, 134(February), 301-313.
  • 5. Belz S. (2016): A synergetic use of hydrogen and fuel cells in human spaceflight power systems. Acta Astronautica, 121, 323-331.
  • 6. Burel F., Taccani R., Zuliani N. (2013): Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy, 57, 412-420.
  • 7. Chang D., Rhee T., Nam K., Chang K., Lee D., Jeong S. (2008): A study on availability and safety of new propulsion systems for LNG carriers. Reliab. Eng. Syst. Saf., 93(12), 1877-85.
  • 8. Lin C.-Y. (2013): Strategies for promoting biodiesel use in marine vessels. Marine Policy, 40, 84-90.
  • 9. Chilev C., Darkrim Lamari F. (2016): Hydrogen storage at low temperature and high pressure for application in automobile manufacturing. International Journal of Hydrogen Energy, 41, 744-1758
  • 10. Rao D., Wang Y., Meng Z., Yao S., Chen X., Shen X., Lu R. (2015): Theoretical study of H2 adsorption on metaldoped graphene sheets with nitrogen-substituted defects. International Journal of Hydrogen Energy, 40, 14154-14162.
  • 11. Dincer I., Canan A. (2015): Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094-11111.
  • 12. Dincer I. (2012): Green methods for hydrogen production. International Journal of Hydrogen Energy, 37, 1954-1971.
  • 13. Yeo D., Ahn B., Kim J., Kim I. Propulsion alternatives for modern LNG carriers. Samsung Heavy Industries Co., Ltd., Paper PS6-S.
  • 14. Dobrota D., Lalić B., Komar I. (2013): Problem of Boil-off in LNG Supply Chain. Regular papers, Transactions on Maritime Science, 02, 91-100.
  • 15. Sciberras E. A., Zahawi B., Atkinson D. J. (2015): Electrical characteristics of cold ironing energy supply for berthed ships. Transportation Research Part D, 39, 31-43.
  • 16. Attah E. E., Bucknall R. (2015): An analysis of the energy efficiency of LNG ships power in options using the EEDI. Ocean Engineering, 110, 62-74.
  • 17. Exxonmobil, www.corporate.exxonmobil.com [accessed 20.11.16].
  • 18. Omar F., Szpunar J. A., Szpunar B., Beye A. C. (2016): Hydrogen adsorption and storage on palladium − functionalized graphene with NH-dopant: A first principles calculation. Applied Surface Science, Available online September 2016
  • 19. Gas Natural Fenosa. www.gasnaturalfenosa.com [accessed 19.11.16].
  • 20. Gutiérrez J. L. (2005): El hidrógeno, combustible del futuro. Rev. R. Acad. Cienc. Exact. Fís. Nat. (Esp), 99(1), 49-67. V Programa de Promoción de la Cultura Científica y Tecnológica.
  • 21. Lindstad H., Sandaas I., Strřmman A. H. (2015): Assessment of cost as a function of abatement options in maritime emission control areas. Transportation Research Part D, 38, 41-48.
  • 22. Xiao J., Zhou T., Cossement D., Bénard P., Chahine R. (2013): Coupled thermal simulation of hydrogen storage tank-Dewar flask system. International Journal of Hydrogen Energy, 38(25), 10880-88.
  • 23. Fagerholt K., Gausel N. T., Rakke J. G., Psaraftis H. N. (2015): Maritime routing and speed optimization with emission control areas. Transportation Research Part C, 52, 57-73.
  • 24. Klein S. A. (2012): Engineering Equation Solver (EES); 2012 Academic Professional V9.172.
  • 25. Kumar S., Kwon H., Choi K., Hyun Cho J., Lim W., Moon I. (2011): Current status and future projections of LNG demand and supplies: A global prospective. Energy Policy, 39(7), 4097-104.
  • 26. Linde Group www.linde.com [accessed 02.11.16].
  • 27. Maxwell D., Zhu Z. (2011): Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Econ., 33(2), 217-26.
  • 28. ME-GI Dual Fuel MAN B&W Engines. A Technical, Operational and Cost-effective Solution for Ships Fuelled by Gas. http://goo.gl/caO0k1 [accessed 19.11.16].
  • 29. Mitsubishi Heavy Industries, www.mhi-global.com [accessed 23.11.16].
  • 30. MAN (Marine Engines and Systems), www.marine.man. eu [accessed 23.11.16].
  • 31. Rusman N. A. A., Dahari M. (2016): A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126.
  • 32. Reguera E. (2009): Hydrogen Storage Nanocavities. Rev. Cub. Física, 26, 3-14.
  • 33. Repsol. www.repsol.com [accessed 19.11.16].
  • 34. Romero Gómez J., Romero Gómez M., Lopez Bernal J., Baalińa Insua A. (2015): Analysis and efficiency enhancement of a boil-off gas reliquefaction system with cascade cycle on board LNG carriers. Energy Convers. Manage., 94,261-74.
  • 35. Samsung Techwin, www.samsungtechwin.com [accessed 20.11.16]
  • 36. Sinha R. P., Nik W. M. N. W. (2011): Investigation of propulsion system for large LNG ships. 1st International Conference on Mechanical Engineering Research (ICMER2011)
  • 37. U.S. Energy Information Administration, Annual Energy Outlook 2014.
  • 38. Wartsila.www.wartsila.com [accessed 19.11.16].
  • 39. Yeo D., Ahn B., Kim J., Kim I. (2007): Propulsion alternatives for modern LNG carriers. In: Gas Technology Institute - Natural Gas 2007, LNG 15 GNL 15, 620-35.
  • 40. Yu Y. H., Kim B. G., Lee D. G. (2013): Cryogenic reliability of the sandwich insulation board for LNG ship. Composite Structures, 95, 547-556, ISSN 0263-8223.
  • 41. Shin Y. G., Lee Y. P. (2009): Design of a boil-off natural gas reliquefaction control system for LNG carriers. Applied Energy, 86(1), 37-44, ISSN 0306-2619.
  • 42. Fan Z., Zhao P., Niu M., Maddy J. (2016): The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41, 14535-4552.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88370e93-8b49-47d9-b72c-3dff46e9ef66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.