PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of Argo floats as virtual moorings for monitoring the South Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Argo float measurement network is increasingly effectively covering internal seas and shelf areas. In this paper, a specific approach to using Argo floats as ‘virtual moorings’ within the conditions of the Baltic Sea is presented. Following a series of successful deployments with standard configurations, it was decided that the settings forcing the float to stay at the bottom between profiles should be tested. This significantly reduced the drift of the float and allowed measurements to be made in a limited water area for a longer time. The data obtained from Argo floats used as virtual mooring can be a valuable source for monitoring and analysing the hydrology of individual basins of the Baltic Sea. The results show that the temporal and spatial variability of the observed fields of temperature, salinity, and other properties of seawater is very high. More data are needed to correctly determine the mean properties of the basins and their temporal variability. Therefore, Argo floats can be a source of efficient and inexpensive hydrographic data for shallow seas such as the Baltic.
Słowa kluczowe
Czasopismo
Rocznik
Strony
99--110
Opis fizyczny
Bibliogr. 38 poz., rys.,map., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Asakawa, K., Nakamura, M., Maeda, Y., Hyakudome, T., Ishihara, Y., 2016. Development of underwater glider for long-term virtual mooring: Aiming 6,000 m depth with ceramic housing. Techno-Ocean, Kobe, Japan, 419-424. https://doi.org/10.1109/Techno-Ocean.2016.7890690
  • 2. Christensen, O.B., Kjellström, E., Dieterich, C., Gröger, M., Meier, H.E.M., 2022. Atmospheric regional climate projections for the Baltic Sea region until 2100. Earth Syst. Dynam. 13 (1), 133-157. https://doi.org/10.5194/esd- 13- 133- 2022
  • 3. Davis, R.E., Webb, D.C., Regier, L.A., Dufour, J., 1992. The Autonomous Lagrangian Circulation Explorer (ALACE). J. At-mos. Oceanic Technol. 9, 264-285. https://doi.org/10.1175/1520-0426(1992)009〈0264:TALCE〉2.0.CO;2
  • 4. Desbruyères, D., McDonagh, E.L., King, B.A., Thierry, V., 2017. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Clim. 30 (6), 1985—1997. https://doi.org/10.1175/JCLI- D- 16- 0396.1
  • 5. Dutheil, C., Meier, H.E.M., Gröger, M., Börgel, F., 2022. Warming of Baltic Sea water masses since 1850. Clim. Dynam. 61, 1311-1331. https://doi.org/10.1007/s00382-022-06628-z
  • 6. Döscher, R., Meier, H.M., 2004. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea. AMBIO 33 (4), 242-248. https://doi.org/10.1579/0044-7447-33.4.242
  • 7. Euro-Argo ERIC, 2017. Strategy for the evolution of Argo in Europe, v3.2., EA-2016-ERIC-STRAT. https://dx.doi.org/10.13155/48526
  • 8. Haavisto, N., Tuomi, L., Roiha, P., Siiriä, S.M., Alenius, P., Purokoski, T., 2018. Argo floats as a novel part of the monitoring of the hydrography of the Bothnian Sea. Front. Mar. Sci. 5, 324. https://doi.org/10.3389/fmars.2018.00324
  • 9. HELCOM, 2013. Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Balt. Sea Environ. Proc. (137).
  • 10. Janecki, M., Dybowski, D., Rak, D., Dzierzbicka-Glowacka, L., 2022. A New Method for Thermocline and Halocline Depth Determination at Shallow Seas. J. Phys. Oceanogr. 52 (9), 2205-2218. https://doi.org/10.1175/JPO-D-22-0008.1
  • 11. Karlson, B., Axe, P., Funkquist, L., Kaitala, S., Sørensen, K., 2009. Infrastructure for marine monitoring and operational oceanography. Swedish Meteorological and Hydrological Institute.
  • 12. Karstensen, J., Liblik, T., Fischer, J., Bumke, K., Krahmann, G., 2014. Summer upwelling at the Boknis Eck time-series station (1982 to 2012) — a combined glider and wind data analysis. Biogeosciences 11, 3603-3617. https://doi.org/10.5194/bg- 11- 3603- 2014
  • 13. Klein, B., Angel-Benavides, I., Siiriä, S.-M., Merchel, M., Notarstefano, G., Gallo, A., Allen, J., Marasco, M., Díaz, L., Nilsen, J.E.Ø., 2022. D2.7: A report on the adaptation of existing DMQC methods to marginal seas. Zenodo. https://doi.org/10.5281/zenodo.8366257
  • 14. Laakso, L., Mikkonen, S., Drebs, A., Karjalainen, A., Pirinen, P., Alenius, P., 2018. 100 years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea. Ocean Sci. 14 (4), 617-632. https://doi.org/10.5194/os-14-617-2018
  • 15. Levitus, S., Antonov, J.I., Boyer, T.P., Baranova, O.K., Garcia, H.E., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Seidov, D., Yarosh, E.S., Zweng, M.M., 2012. World ocean heat content and thermosteric sea level change (0—2000 m), 1955—2010. Geophys. Res. Lett. 39 (10). https://doi.org/10.1029/2012GL051106
  • 16. Lips, U., Kikas, V., Liblik, T., Lips, I., 2016. Multi-sensor in situ observations to resolve the sub-mesoscalefeatures in the stratified Gulf of Finland, Baltic Sea. Ocean Sci. 12 (3), 715-732. https://doi.org/10.5194/os- 12- 715- 2016
  • 17. Meier, H.M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Kjellström, E., 2022. Oceanographic regional climate projections for the Baltic Sea until 2100. Earth Syst. Dyn. 13 (1), 159-199. https://doi.org/10.5194/esd-13-159-2022
  • 18. Merchel, M., Walczowski, W., 2020. Increases in the temperature and salinity of deep and intermediate waters in the West Spitsbergen Current region in 1997—2016. Oceanologia 62 (4), 501-510. https://doi.org/10.1016/j.oceano.2020.08.001
  • 19. Nakamura, M., Hyodo, T., Koterayama, W., 2007. “LUNA” testbed vehicle for virtual mooring. ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I) https://doi.org/10.1109/Oceans-Spain.2011.6003667
  • 20. Notarstefano, G., Pacciaroni, M., Kassis, D., Palazov, A., Slabakova, V., Tuomi, L., Siiriä, S., Walczowski, W., Merchel, M., Allen, J., Ruiz, I., Diaz, L., Taillandier, V., Arduini Plaisant, L., Cancouët, R., 2021. D6.1: Tailoring of the controlling and monitoring tools for operations in shallow coastal waters. Zenodo. https://doi.org/10.5281/zenodo.7101583
  • 21. Omstedt, A., Hansson, D., 2006. The Baltic Sea ocean climate system memory and response to changes in the water and heat balance components. Cont. Shelf Res. 26, 236-251. https://doi.org/10.1016/j.csr.2005.11.003
  • 22. Ostrovskii, A.G., Zatsepin, A.G., Soloviev, V.A., Tsibulsky, A.L., Shvoev, D.A., 2013. Autonomous system for vertical profiling of the marine environment at a moored station. Oceanology 53, 233-242. https://doi.org/10.1134/S0001437013020124
  • 23. Pouliquen, S., 2018. Euro-Argo Research Infrastructure Sustainability and Enhancement. Project proposal. Prien, R.D., Schulz-Bull, D.E., 2016. Technical note: GODESS - a pro-filing mooring in the Gotland Basin. Ocean Sci. 12 (4), 899-907. https://doi.org/10.5194/os-12-899-2016
  • 24. Purkey, S.G., Johnson, G.C., 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23 (23), 6336-6351. https://doi.org/10.1175/2010JCLI3682.1
  • 25. Rak, D., Wieczorek, P., 2012. Variability of temperature and salinity over the last decade in selected regions of the southern Baltic Sea. Oceanologia 54 (3), 339-354. https://doi.org/10.5697/oc.54-3.339
  • 26. Rak, D., Walczowski, W., Dzierzbicka-Głowacka, L., Shchuka, S., 2020. Dissolved oxygen variability in the southern Baltic Sea in 2013—2018. Oceanologia 62 (4), 525-537. https://doi.org/10.1016/j.oceano.2020.08.005
  • 27. Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A., Gulev, S., Johnson, G.C., Josey, S.A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L.D., Wang, F., 2013. Observations: Ocean. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cam-bridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 28. Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P., Wijffels, S., 2015. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5 (3), 240. https://doi.org/10.1038/nclimate2513
  • 29. Roiha, P., Siiriä, S.M., Haavisto, N., Alenius, P., Westerlund, A., Purokoski, T., 2018. Estimating currents from argo trajectories in the Bothnian Sea, Baltic Sea. Front. Mar. Sci. 5, 308. https://doi.org/10.3389/fmars.2018.00308
  • 30. Rudnick, D.L., Davis, R.E., Eriksen, C.C., Fratantoni, D.M., Perry, M.J., 2004. Underwater gliders for ocean research. Marine Technol. Soc. J. 38 (2), 73-84. https://doi.org/10.4031/002533204787522703
  • 31. Siiriä, S., Merchel, M., Walczowski, W., Tuomi, L., Arduini Plaisant, L., 2020. D6.4: Preliminary results of shallow coastal float operations in the Baltic Sea. Zenodo. https://doi.org/10.5281/zenodo.7104069
  • 32. Siiriä, S., Roiha, P., Tuomi, L., Purokoski, T., Haavisto, N., Alenius, P., 2018. Applying area-locked, shallow water Argo floats in BalticSea monitoring. J. Oper. Oceanogr. 12 (1), 58-72. https://doi.org/10.1080/1755876X.2018.1544783
  • 33. Stoicescu, S.T., Lips, U., Liblik, T., 2019. Assessment of eutrophication status based on sub-surface oxygen conditions in the Gulf of Finland (Baltic Sea). Front. Mar. Sci. 6, 54. https://doi.org/10.3389/fmars.2019.00054
  • 34. Stramska, M., Białogrodzka, J., 2015. Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32-years (1982—2013) of satellite data. Oceanologia 57 (3), 223-235. https://doi.org/10.1016/j.oceano.2015.04.004
  • 35. Stockmayer, V., Lehmann, A., 2023. Variations of temperature, salinity and oxygen of the Baltic Sea for the period 1950 to 2020. Oceanologia 65 (3), 466-483. https://doi.org/10.1016/j.oceano.2023.02.002
  • 36. Swallow, J.C., 1955. A neutral-buoyancy float for measuring deep currents. Deep-Sea Res. 3 (1), 74-81. https://doi.org/10.1016/0146-6313(55)90037-X
  • 37. Walczowski, W., Merchel, M., Rak, D., Wieczorek, P., Goszczko, I., 2020. Argo floats in the southern Baltic Sea. Oceanologia 62 (4), 478-488. https://doi.org/10.1016/j.oceano.2020.07.001
  • 38. Wong, A., Keeley, R., Carval, T., Argo Data Management Team, 2022. Argo Quality Control Manual for CTD and Trajectory Data. https://doi.org/10.13155/33951
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8832e4fa-036a-4a25-8388-d8528028be1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.