
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

5

Neural Network Structure Optimization Algorithm

Grzegorz Nowakowski, Yaroslaw Dorogyy, Olena Doroga-Ivaniuk

Submitted: 17th December 2017; accepted: 20th March 2018

DOI: 10.14313/JAMRIS_1-2018/1

Abstract:
This paper presents a deep analysis of literature on the
problems of optimization of parameters and structure of
the neural networks and the basic disadvantages that
are present in the observed algorithms and methods.
As a result, there is suggested a new algorithm for neu-
ral network structure optimization, which is free of the
major shortcomings of other algorithms. The paper de-
scribes a detailed description of the algorithm, its imple-
mentation and application for recognition problems.

Keywords: structure optimization, neural network, ReLU,
SGD

1. Introduction
The unit of neural networks is widely used to solve

various problems including recognition tasks. The ex-
istence of a method for automatic search of neural
network optimal structure could provide an oppor-
tunity to get the structure of a neural network much
faster, that would better suit the subject area and ex-
isting incoming data [1].

Since there are no well-defined procedures for se-
lecting the parameters of a NN and its structure for
a given application, finding the best parameters can
be a case of trial and error.

There are many papers, like [2–4] for example,
in which the authors arbitrarily choose the num-
ber of hidden layer neurons, the activation function,
and number of hidden layers. In [5], networks were
trained with 3 to 12 hidden neurons, and it was found
that 9 was optimal for that specific problem. The GA
had to be run 10 times, one for each of the network
architectures.

Since selecting NN parameters is more of an art
than a science, it is an ideal problem for the GA. The
GA has been used in numerous different ways to select
the architecture, prune, and train neural networks. In
[6], a simple encoding scheme was used to optimize
a multi-layer NN. The encoding scheme consisted of
the number of neurons per layer, which is a key pa-
rameter of a neural network. Having too few neurons
does not allow the neural network to reach an accept-
ably low error, while having too many neurons limits
the NN’s ability to generalize.

Another important design consideration is de-
ciding how many connections should exist between
network layers. In [7], a genetic algorithm was used

to determine the ideal amount of connectivity in
a feed-forward network. The three choices were 30%,
70%, or 100% (fully-connected).

In general, it is beneficial to minimize the size of
a NN to decrease learning time and allow for better
generalization. A common process known as pruning
is applied to neural networks after they have already
been trained. Pruning a NN involves removing any un-
necessary weighted synapses. In [8], a GA was used
to prune a trained network. The genome consisted of
one bit for each of the synapses in the network, with
a ‘1’ represented keeping the synapse, while a ‘0’ rep-
resented removing the synapse. Each individual in
the population represented a version of the original
trained network with some of the synapses pruned
(the ones with a gene of ‘0’). The GA was performed
to find a pruned version of the trained network that
had an acceptable error. Even though pruning reduces
the size of a network, it requires a previously trained
network. The algorithm developed in this research
optimizes for size and error at the same time, finding
a solution with minimum error and minimum num-
ber of neurons.

Another critical design decision, which is appli-
cation-specific, is the selection of the activation func-
tion. Depending on the problem at hand, the selection
of the correct activation function allows for faster
learning and potentially a more accurate NN. In [9],
a GA was used to determine which of several activa-
tion functions (linear, logsig, and tansig) were ideal
for a breast cancer diagnosis application.

Another common use of GA is to find the optimal ini-
tial weights of back-propagation and other types of neu-
ral networks. As mentioned in [10], genetic algorithms
are good for global optimization, while neural networks
are good for local optimization. Using the combination
of genetic algorithms to determine the initial weights
and back propagation learning to further lower error
takes advantage of both strengths and has been shown
to avoid local minima in the error space of a given
problem. Examining the specifics of the GA used in [2]
shows the general way in which many other research
papers use GA to determine initial weights. In [2], this
technique was used to train a NN to perform image res-
toration. The researchers used fitness based selection
on a population of 100, with each gene representing
one weight in the network that ranged from -1 to 1 as
a floating point number. Dictated by the specifics of the
problem, the structure of the neural network was fixed
at nine input and one output node. The researchers ar-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

6 Articles6

bitrarily chose five neurons for the only hidden layer in
the network. To determine the fitness of an individual,
the initial weights dictated by the genes are applied
to a network which is trained using back propagation
learning for a fixed number of epochs. Individuals with
lower error were designated with a higher fitness value.
In [10–11] this technique was used to train a sonar ar-
ray azimuth control system and to monitor the wear of
a cutting tool, respectively. In both cases, this approach
was shown to produce better results that when using
back-propagation exclusively. In [12] the performance
of a two back propagation neural networks were com-
pared: one with GA optimized initial weights and one
without. The number of input, hidden, and output neu-
rons were fixed at 6, 25, and 4, respectively. Other pa-
rameters such as learning rate and activation functions
were also fixed so that the only differences between the
two were the initial weights.

In [2, 11–13] each of the synaptic weights was en-
coded into the genome as a floating point number (at
least 16 bits), making the genome very large. The algo-
rithm developed in this research only encodes a ran-
dom number seed, which decreases the search space
by many orders of magnitude. Determining the initial
values using the GA has improved the performance of
non-back propagation networks as well. In [14] a GA
was used to initialize the weights of a Wavelet Neural
Network (WNN) to diagnose faulty piston compres-
sors. WNNs have an input layer, a hidden layer with the
wavelet activation function, and an output layer. Instead
of using back propagation learning, these networks use
the gradient descent learning algorithm. The structure
of the network was fixed, with one gene for each weight
and wavelet parameter. Using the GA was shown to pro-
duce lower error and escape local minima in the error
space. Neural networks with feedback loops have also
been improved with GA generated initial weights.

Genetic algorithms have also been used in the
training process of neural networks, as an alterna-
tive to the back-propagation algorithm. In [15] and
[16], genes represented encoded weight values,
with one gene for each synapse in the neural net-
work. It is shown in [17] that training a network
using only the back-propagation algorithm takes
more CPU cycles than training using only GA, but
in the long run back-propagation will reach a more
precise solution. In [18], the Improved Genetic Algo-
rithm (IGA) was used to train a NN and shown to be
superior to using a simple genetic algorithm to find
initial values of a back propagation neural network.
Each weight was encoded using a real number in-
stead of a binary number, which avoided lack of ac-
curacy inherent in binary encoding. Crossover was
only performed on a random number of genes in-
stead of all of them, and mutation was performed on
a random digit within a weight’s real number. Since
the genes weren’t binary, the mutation performed
a “reverse significance of 9” operation (for example
3 mutates to 6, 4 mutates to 5, and so on). The XOR
problem was studied, and the IGA was shown to be
both faster and produce lower error. Similar to [3],
this algorithm requires a large genome since all the
weights are encoded.

Previously, genetic algorithms were used to op-
timize a one layered network [19], which is too few
to solve even moderately complex problems. Many
other genetic algorithms were used to optimize neu-
ral networks with a set number of layers [2–3, 12, 14,
20–21]. The problem with this approach is that the
GA would need to be run once for each of the different
number of hidden layers. In [20], the Variable String
Genetic Algorithm was used to determine both the in-
itial weights of a feed forward NN, as well as the num-
ber of neurons in the hidden layer to classify infrared
aerial images. Even though the number of layers was
fixed (input, hidden, and output), adjusting the num-
ber of neurons allowed the GA to search through dif-
ferent sized networks.

A wide range of algorithms is used to build the op-
timal neural network structure. The first of these al-
gorithms is the tiled constructing algorithm [22]. The
idea of the algorithm is to add new layers of neurons
in a way that input training vectors that have differ-
ent respective initial values, would have a different
internal representation in the algorithm. Another
prominent representative is the fast superstructure
algorithm [23]. According to this algorithm new neu-
rons are added between the output layers. The role of
these neurons is the correction of the output neurons
error. In general, a neural network that is based on
this algorithm has the form of a binary tree.

In summary, the papers mentioned above studied
genetic algorithms that were lacking in several ways:
•	 They do not allow flexibility of the number of

hidden layers and neurons.
•	 They do not optimize for size.
•	 They have very large genomes and therefore

search spaces.
The algorithm described in this article addresses

all of these issues. The main goal of this work is to
analyze the structure optimization algorithm of neu-
ral network during its learning for the tasks of pattern
recognition [24] and to implement the algorithm us-
ing program instruments [1].

2.	 The Algorithm of Structural Optimization
During Learning

Structural learning algorithm is used in multilayer
networks and directs distribution networks and has
an iterative nature: on each iteration it searches for
the network structure that is better than the last one.
Network search is performed by sorting all possible
mutations of network and by selection and combina-
tion of the best ones(selection and crossing).

Consider the basic parameters of the algorithm.

Learning parameters:
•	 learning rate: ;
•	 inertia coefficient: ;
•	 coefficient of weights damping: ;
•	 the probability of activation of the hidden layer

neuron: ph;
•	 the probability of activation of the input layer

neuron: pi.
Structured learning parameters:

•	 initial number of neurons in the hidden layer;

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

7Articles 7

•	 activation function for the hidden layer;
•	 activation function in the output layer;
•	 maximum number of mutations in the crossing;
•	 the number of training epochs of the original

network;
•	 the number of training epochs in the iteration;
•	 acceptable mutation types;
•	 part of the training sample used for training.

3.	 Elementary Structural Operations
on a Neural Network

According to [25] the following basic structural
operations on a network have been introduced [1]:
•	 adding a synapse between two randomly selected

unrelated network nodes or neurons – operation
SynADD;

•	 removing the synapse between two randomly
selected unrelated network nodes or neurons –
operation SynDEL;

•	 moving synapse between two randomly selected
unrelated network nodes or neurons – operation
SynMOD;

•	 changing the activation function of the neuron to
randomly selected neuron – operation AMOD;

•	 serialization of the node or the neuron – operations
SerNODE and SerNR;

•	 parallelization of the node or the neuron –
operations ParNODE and ParNR;

•	 adding a node or a neuron – operations AddNODE

and AddNR;
•	 create a new layer – operation LADD;
•	 removing the layer NN – operation LDEL.

The use or nonuse of described structural opera-
tions depends on the complexity of the task.

For recognition problems that will be described in
this article operations(mutations) described in [26]
are used.

4.	 Algorithm Implementation
Internally neural networks are presented as nu-

meric matrix sequences of each layer weight except
for the input one [1]. In Fig.1 the matrix sequence for
[2-3-2] network type is shown: hidden layer matrix
2x3 and output layer one 3x2.

Fig. 1. [2-3-2] Network internal realization example

Each element aij in matrix Ak equals to weight val-
ue between i and j network neurons.

For realization of different types of mutations, the
operations on matrices are used. When adding a new
neuron to the layer a combination of adding opera-
tions of new matrix row and column is implemented.
In Fig. 2, 3 and 4 the realization of neuron addition

to the input, hidden and output layers has been pre-
sented.

Fig. 2. Neuron addition to the input layer

Fig. 3. Neuron addition to the hidden layer

Fig. 4. Neuron addition to the output layer

To extract neurons opposing operations are used.
In Fig. 5 there is a realization of extraction of a second
neuron in the hidden network.

Fig. 5. Hidden layer neuron extraction

When adding a new layer, the new weight’s matrix
insertion operation is performed.

Since some operations change matrices’ structures,
there is a certain difficulty in their combination. For
example, when extracting the hidden layer O3 neuron
in [2–3–2] network the O4 neuron in the resulting net-
work will shift one position and become O3 neuron;
when adding new hidden layer, that contains 4 neurons
in front of existing hidden layer, next layer will shift one
position. When combining different mutations their
step-by-step execution has to be done in a strict order,
which depends on type and parameters of each muta-
tion. In Listing 1 there is a code fragment implemented
in Clojure [27], that executes combined mutation. At
first the mutations that do not change structures –ad-
dition and extraction of connections, are executed, then
the addition of new neurons and extraction of existing
ones is executed; new layers are added at the end. Mu-
tations, which extract neurons, are executed in neuron
number decrease order, similarly as layer addition – in
a new layer index decrease order.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

8 Articles8

(defmethodmutate ::combined

[net {:keys [mutations]}]

(let [grouped-ms (group-by :operation mutations)

{add-node-ms ::add-node del-node-ms ::del-node

layer-ms ::add-layer} grouped-ms

safe-ms (mapcat grouped-ms [::identity ::add-edge

::del-edge])

safe-del-node-ms (reverse

(sort-by #(second (:deleted-node %)) del-node-ms))

safe-layer-ms (reverse(sort-by :layer-pos layer-ms))

ms (concat safe-ms add-node-ms safe-del-node-ms

safe-layer-ms)]

(reduce mutate net ms)))

Listing 1 – Code fragment implemented in Clojure that
executes combined mutation

One of the Clojure [9] benefits over other pro-
gramming languages is usage of unchangeable data
structures – collections and containers, the content
of which cannot be changed. In return, while trying
to add a new element to the collection the new sub-
stance of the collection will be created containing this
element. The operation of creating a new collection is
optimized this way: both objects will use the mutu-
al part of collection. In the Fig. 6 the result of adding
object 5 to the end of array [……] is shown. V denotes
an old collection object, v2 denotes newly created col-
lection object.

Fig. 6. Principle of data structure work in Clojure

Programming with unchangeable data structure
usage makes programs much easier to understand.
•	 program parallelization simplicity–unchangeable

data can be used in parallel without any need to
synchronize threads;

•	 no problems with memory leaks;
•	 caching simplicity;
•	 major memory economy in some cases.

Due to these characteristics of unchangeable struc-
tures the main part of an algorithms work is done in
parallel with maximum computing resources usage.

The developed system has a client-server archi-
tecture. A system deployment diagram is shown in
Fig. 7. In general the system consists of 2 parts:
•	 server application, which does neural network

learning and implements structure optimization
algorithm;

•	 client application, which implements GUI.

Fig. 7. System deployment diagram

Clojure has been used to implement the server
application. The Java platform [28] has been used as
a runtime environment.

For the GUI implementation, the ClojureScript–
Clojure dialect [27], executed in JavaScript, has been
used.

5.	 Experimental Research
Example 1. MONK’s Problem. MONK’s Problem

[29] was among the first that had been used to com-
pare classification algorithms. Each training example
of sample contains 7 attributes, whereas the last at-
tribute – class number which should be referred to
example:
1.	 a1 ∈ {1, 2, 3}
2.	 a2 ∈ {1, 2, 3}
3.	 a3 ∈ {1, 2, 3}
4.	 a4 ∈ {1, 2, 3}
5.	 a5 ∈ {1, 2, 3, 4}
6.	 a6 ∈ {1, 2}
7.	 a7 ∈ {0, 1}

The following tasks are determined::
•	 Problem M1: (a1 = a2) ∨ (a5 = 1)
•	 Problem M2: at least 2 of (a1 = 1, a2 = 1, a3 = 1,

a4 = 1, a5 = 1, a6 = 1)
•	 Problem M3: ((a5 = 3) ∨ (a4 = 1)) ∨ ((a5 4) ∧ (a2 ≠ 3)

Neural networks easily solve problems M1 and
M2 and achieve 100% classification accuracy in the
test sample. Training sample for M3 problem include
a noise as 5% incorrectly classified examples so this
issue will be used for research.

We used the following training values and struc-
tural optimization settings:
•	 training speed:  = 0.001;
•	 inertia coefficient:  = 0;
•	 coefficient of weights damping:  = 0.5;
•	 the maximum number of mutations at crossing:

M = 10;
•	 the number of training epochs of original network:

T0 = 100;
•	 the number of training epochs in iteration: Ti = 20;
•	 allowable types of mutations, adding and removing

weights;
•	 type of cost function: cross-entropy [30].

The obtained price values depending on classifica-
tion accuracy are presented in Figs. 8 and 9.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

9Articles 9

Fig. 8. Price value of normal and optimized networks

Fig. 9. Classification accuracy of ordinary and
optimized networks

The resulting accuracy of the classification is tab-
ulated in Table 1.

Table 1. The resulting classification accuracy for
MONK’s problems

Type NN Training [%] Testing [%]

Common 97.54 96.99

Optimized 98.36 96.75

Although a significant increase in classification
accuracy did not happen with these dependencies we
can conclude that due to optimization of the structure
during training, the network does not stop at points of
local minima and studies twice faster.

Example 2. TwoSpirals problem. This problem is
a rather complicated classification task and a gen-
eralization of many recognition algorithms which
was proposed in [31]. The sample consists of a set of
points that form a two-dimensional spiral. It is nec-
essary to properly classify the points that are not in-
cluded in the training set.

Sample Selection. Each data training sample con-
sists of three elements: the x and y coordinates in the
range 0…1, and a number of the curve where it meets.
The sample in the graphic form is shown in Fig. 10.

Network architecture. To solve the problem,
a 2-layer network with one hidden layer containing
10 neurons with linear straightened activation func-
tion was selected as the original network.

Networks such as 2-10-10-2, 2-5-10-2 are the best
in coping with this task, using an odd activation func-
tion (bipolar sigmoid function or a hyperbolic tangent).
Instead, it was interesting to explore the possibility of

solving the problem only with the optimization of the
structure using more common network topology.

Research of the algorithm. We used the following
training values and structural optimization settings:
•	 training speed:  = 0.005;
•	 inertia coefficient:  = 0;
•	 coefficient of weights damping:  = 0.1;
•	 the probability of activation of the hidden layer

neuron: ph = 1;
•	 the probability of activation of the input layer

neuron: pi = 1;
•	 the maximum number of mutations at crossing:

M = 20;
•	 the number of training epochs in original network:

T0 = 50;
•	 the number of training epochs in iteration: Ti = 150;
•	 permissible types of mutations: all;
•	 type of cost function: cross-entropy [30].

Figs. 11 and 12 show the relation between price
value and classification accuracy on a number of com-
pleted training epochs.

Fig. 11. Ordinary and optimized network price value
during training

Fig. 12. Accuracy classification of ordinary and
optimized networks during training

Fig. 10. TwoSpirals sample in the graphic form

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

10 Articles10

After 7 iterations of the algorithm, we obtained
a [2-9-9-7-7-2] network with 92.7% classification ac-
curacy.

Example 3. Human Recognition. The implemented
program system is used to research problems of hu-
man face recognition [1]. The face image database of
Yale university was used as output data [32].

Sampling 10 different persons and 50 different
images of each person were selected. Each image has
been scaled to the size of 26×26 pixels and coded into
676-dimensional vector, the values of pixels’ bright-
ness were normalized to 0…1 range. Each output class
representing a particular person was coded into a 10
element vector which contains 9 zeroes and a single 1
at a different index. The obtained 500 samples were
randomly divided into training and testing sets 2:1.

In Fig. 13 the source images and images used for
neural network learning are shown.

Fig. 13. Data set formation example

Architecture of source network. A network ar-
chitecture which is shown in Fig. 14 was used to eval-
uate the work of the algorithm.

Fig. 14. Image recognition network architecture

Research of the algorithm. The following training
values and structural optimization settings have been
used for SGD with weight decay regularization [33]:
•	 learning rate:  = 0.002;
•	 inertia coefficient:  = 0.1;
•	 coefficient of weights damping:  = 0.1;
•	 the probability of activation of the hidden layer

neuron: ph = 1;
•	 the probability of activation of the input layer

neuron: pi = 1;

Selected parameters following algorithm:
•	 initial number of neurons in the hidden layer: 3;
•	 activation function for the hidden layer: ReLU [34];
•	 activation function in the output layer: softmax;
•	 maximum number of mutations in the crossing:

M = 50;
•	 the number of training epochs of the original

network: T0 = 100;
•	 the number of training epochs in the iteration:

Ti = 5;
•	 acceptable mutation types: adding and removing

synapses;
•	 part of the training sample used for training: 1;
•	 type of cost function: cross-entropy [30].

During 40 iterations of the algorithm 300 extrac-
tions and 128 additions of synapses were carried out.
In Fig. 15 and Fig. 16 the dependency of price and
precision values of classification from amount of im-
plemented learning epochs has been presented. Re-
ceived values are shown in Table 2.

Due to connections’ optimization structure we
could lower false classification percentage to 4.2% on
testing set.

An experiment has also been made in which Ti = 3,
which is shown in Fig. 17 and Fig. 18.

During 100 iterations of the algorithm 645 extrac-
tions and 457 additions of synapses were carried out.
We could lower the false recognition percentage from
7.8 to 6.0 on testing set. The result is shown in Table 3.

Table 2. The resulting accuracy of image classification
for Ti = 5

Type NN Training, % Testing, %

Common 97.59 93.41

Optimized 98.19 95.80

Fig. 15. Image classification accuracy for Ti = 5

Fig. 16. Price value for image classification for Ti = 5

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

11Articles 11

Table 3. The resulting accuracy of image classification
for Ti = 5

Type NN Training, % Testing, %

Common 98.79 92.21

Optimized 99.09 94.01

Fig. 17. Image classification accuracy for Ti = 3

Fig.18. Price value for image classification for Ti = 3

Example 4. Evaluation of critical IT-infrastructure
functioning. In this example, we show the quality of
operation of the service using an algorithm for esti-
mating [35].

Figure 19 shows the example of a dependency tree
which schematically represents the impact of critical
IT-infrastructure elements (hereinafter – IT-infra-
structure elements (CITIE)).

Fig. 19. CITIE tree example

Here Oj
i , i K∈[]1; , j Ni i∈[]1; are CITIEs, and the

arrows show influence of quality of functioning of
some CITIE on the quality of functioning of other
CITIE. Let’s denote vector of parameters that affect

the quality of CITIE Oj
i , as Pj

i and Qj
i as qualitative

assessment of the functioning of the CITIEs that are
affecting Oj

i .
As an example of CITIE, for which it is necessary to

calculate the qualitative evaluation of functioning, we
selected an average application server.We reviewed
five parameters affecting the quality of its function-
ing, which are constructed sets P’ and Q’:
•	 p1 – hard drive usage. This parameter is reduced

to values between 0 and 1
•	 p2 – CPU usage. This parameter is reduced to

values between 0 and 1;
•	 p3 – load of the network that the server is

connected to. This is the ratio of available network
bandwidth to the nominal network bandwidth;

•	 p4 – used RAM of the server. This is the ratio of
used RAM volume to the maximum available
memory;

•	 q1 – quality of functioning of another CITIE (DB
server, used by the selected application server).
To calculate the qualitative assessment of the func-

tioning of this CITIE we construct a classifier based
on neural network. For Oj

i the input parameters of
the neural such network will be vector {P’, Q‘} and
the output parameter is qualitative assessment of the
functioning of Oj

i .
Without assumptions about the nature of relation-

ships between elements and qualitative evaluations
of the elements’ parameters, it is advisable to apply
approximate expert estimates based on personal ex-
perience of administrators, IT-managers, etc. Since we
automatically determine the structure of the network,
the person is enough to specify the quality of func-
tioning of the element with different values of {P’, Q’}.

During experiment, values of selected parameters
were artificially set on computers. Then, it was pro-
posed to experts to specify the performance of this
server on a scale from zero to one.

Then we automatically define the type of neural
network, and start training the network using the
method described in previous example. The resulting
structure of neural network we obtained, can be used
to determine the quality of functioning of another
similar CITIE. In this case, it will not have to deter-
mine the optimal network structure and training time
will be reduced. This will allow the service provider
“on the fly” retrain its existing models in a shorter pe-
riod.

During 50 iterations of the algorithm, 157 extrac-
tions and 107 additions of synapses were carried out.
Received values are presented in Table 4.

Due to the optimization structure of connections
we could lower false classification percentage to 5.7%
on testing set.

Table 4. The resulting accuracy of CITIE classification
for Ti = 3

Type NN Training, % Testing, %

Common 96.4 92.1

Optimized 97.8 94.3

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

12 Articles12

Conclusion
This article considered the problem of a structural

optimization algorithm implementation, and the pos-
sible appliance of this algorithm in image recognition
and for evaluation of critical IT-infrastructure func-
tioning problems were analyzed.

Due to the optimization structure of connections
we could lower the false classification percentage to
4.2% in the testing set, and we could lower the false
recognition percentage from 7.8 to 6.0 in the testing
set for human recognition task. For the task of CITIE
evaluation, we could reduce false classification lev-
el to 5.7%. The proposed algorithm is flexible in the
number of hidden layers, neurons and links.

The obtained results prove the efficiency of the
proposed algorithm for using with recognition prob-
lems.

ACKNOWLEDGEMENTS
Presented results of the research, which was car-

ried out under the theme No. E-3/611/2017/DS,
were funded by the subsidies on science granted by
Polish Ministry of Science and Higher Education.

AUTHORS
Grzegorz Nowakowski* – Cracow University of
Technology ul. Warszawska 24, 31-155 Cracow, Po-
land. E-mail: gnowakowski@pk.edu.pl.
YaroslawDorogyy – National Technical University
of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”
av. Victory 37, Kyiv, Ukraine.
E-mail: cisco.rna@gmail.com.
OlenaDoroga-Ivaniuk – National Technical Univer-
sity of Ukraine “Igor Sikorsky Kyiv Politechnic Insti-
tute” av. Victory 37, Kyiv, Ukraine. E-mail: cisco.rna@
gmail.com.
* Corresponding author

REFERENCES

 [1]	 G. Nowakowski et al., “The Realisation of Neural
Network Structural Optimization Algorithm”, In:
Proceedings of the 2017 Federated Conference on
Computer Science and Information Systems, 2017,
1365–1371. DOI: 10.15439/2017F448.

 [2]	 Q. Xiao, W. Shi, X. Xian, X. Yan, “An image resto-
ration method based on genetic algorithm BP
neural network”. In: Proceedings of the 7th World
Congress on Intelligent Control and Automation,
2008, 7653–7656.

 [3]	 W. Wu, W. Guozhi, Z. Yuanmin, W. Hongling, “Ge-
netic Algorithm Optimizing Neural Network
for Short-Term Load Forecasting”. In: Interna-
tional Forum on Information Technology and
Applications, 2009, 583–585. DOI: 10.1109/IFI-
TA.2009.326.

 [4]	 S. Zeng, J. Li, L. Cui, “Cell Status Diagnosis for
the Aluminum Production on BP Neural Net-
work with Genetic Algorithm”, Communica-

tions in Computer and Information Science,
vol. 175, 2011, 146-152. DOI: 10.1007/978-3-
642-21783-8_24.

 [5]	 W. Yinghua, X. Chang, “Using Genetic Artificial
Neural Network to Model Dam Monitoring Data”.
In: Second International Conference on Com-
puter Modeling and Simulation, 2010, 3–7. DOI:
10.1109/ICCMS.2010.80.

 [6]	 R. Sulej, K. Zaremba, K. Kurek, R. Rondio, Appli-
cation of the Neural Networks in Events Classifi-
cation in the Measurement of the Spin Structure
of the Deuteron, Warsaw University of Technol-
ogy, Poland, 2007.

 [7]	 S. A. Harp, T. Samad, “Genetic Synthesis of Neu-
ral Network Architecture”, Handbook of Genetic
Algorithms, 1991, 202–221.

 [8]	 D. Whitley, T. Starkweather, C. Bogart, “Genetic
Algorithms and Neural Networks: Optimiz-
ing Connections and Connectivity”, Parallel
Computing, vol. 14, no. 3, 1990, 347–61. DOI:
10.1016/0167-8191(90)90086-O.

 [9]	 V. Bevilacqua, G. Mastronardi, F. Menolascina,
P. Pannarale, A. Pedone, “A Novel Multi-Objective
Genetic Algorithm Approach to Artificial Neu-
ral Network Topology Optimisation: The Breast
Cancer Classification Problem”, International
Joint Conference on Neural Networks, 1958–
1965, 2006.

[10]	 Y. Du, Y. Li, “Sonar array azimuth control system
based on genetic neural network”. In: Proceed-
ings of the 7th World Congress on Intelligent Con-
trol and Automation, 2008, 6123–6127.

[11]	 S. Nie, B. Ye, “The Application of BP Neural Net-
work Model of DNA-Based Genetic Algorithm
to Monitor Cutting Tool Wear”. In: International
Conference on Measuring Technology and Me-
chatronics Automation, 2009, 338–341. DOI:
10.1109/ICMTMA.2009.160.

[12]	 C. Tang, Y. He, L. Yuan, “A Fault Diagnosis Method
of Switch Current Based on Genetic Algorithm
to Optimize the BP Neural Network”. In: Inter-
national Conference on Electric and Electron-
ics, vol. 99, chapter 122, 2011, 943–950. DOI:
10.1007/978-3-642-21747-0_122.

[13]	 Y. Du, Y. Li, “Sonar array azimuth control system
based on genetic neural network”. In: Proceed-
ings of the 7th World Congress on Intelligent Con-
trol and Automation, 2008, 6123–6127.

[14]	 L. Jinru, L. Yibing, Y. Keguo, “Fault diagnosis of
piston compressor based on Wavelet Neural
Network and Genetic Algorithm”. In: Proceed-
ings of the 7th World Congress on Intelligent Con-
trol and Automation, 2008, 6006–6010. DOI:
10.1109/WCICA.2008.4592852.

[15]	 D. Dasgupta, D. R. McGregor, “Designing Ap-
plication-Specific Neural Networks using
the Structured Genetic Algorithm”. In: Pro-
ceedings of International Workshop on Com-
binations of Genetic Algorithms and Neural
Networks, 1992, 87–96. DOI: 10.1109/CO-
GANN.1992.273946.

[16]	 G. G. Yen, H. Lu, “Hierarchical Genetic Algorithm
Based Neural Network Design”, IEEE Sympo-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 1 2018

13Articles 13

sium on Combinations of Evolutionary Computa-
tion and Neural Networks, 2000, 168–175. DOI:
10.1109/ECNN.2000.886232.

[17]	 P. Koehn, Combining Genetic Algorithms and Neu-
ral Networks: The Encoding Problem, University
of Tennessee, Knoxville, 1994.

[18]	 Z. Chen, “Optimization of Neural Network Based
on Improved Genetic Algorithm”. In: Internation-
al Conference on Computational Intelligence and
Software Engineering, 2009, 1–3. DOI: 10.1109/
CISE.2009.5365287.

[19]	 P. W. Munro, “Genetic Search for Optimal Repre-
sentation in Neural Networks”. In: Proceedings
of the International Joint Conference on Neural
Networks and Genetic Algorithms, chapter 91,
1993, 675–682. DOI: 10.1007/978-3-7091-
7533-0_91.

[20]	 X. Fu, P.E.R. Dale, S. Zhang, “Evolving Neural Net-
work Using Variable String Genetic Algorithms
(VGA) for Color Infrared Aerial Image Classifica-
tion”, Chinese Geographical Science, vol. 18(2),
2008, 162–170.

[21]	 J. M. Bishop, M. J. Bushnell, “Genetic Optimiza-
tion of Neural Network Architectures for Colour
Recipe Prediction”. In: Proceedings of the Inter-
national Joint Conference on Neural Networks
and Genetic Algorithms, 719–725, 1993.

[22]	 M. Mezard, J.P. Nadal, “Learning in feedforward
layered networks: The Tiling algorithm”, Journal
of Physics, 1989, V. A22, P. 2191 – 2203.

[23]	 M. Frean, “The Upstart Algorithm: A Method for
Constructing and Training Feed-Forward Neural
Networks”, Tech. Rep. 89/469, Edinburgh Uni-
versity, 1989.

[24]	 B. D. Ripley, Pattern recognition and neural net-
works, Cambridge: Cambridge Univ. Press, 2009.
DOI: 10.1017/CBO9780511812651.

[25]	 Y. Y. Dorogiy, “Accelerated learning algorithm of
Convolutional neural networks”, Visnik NTUU
“KPI”, Informatics, operation and computer sci-
ence, vol. 57, 2012, 150–154.

[26]	 Y. Y. Dorohyy, “The algorithm of algorithmic op-
timization of the structural neural network is
based on classification of data”, Visnyk NTUU
“KPI”, Informatics, operation and computer sci-
ence, vol. 62, 2015, 169–173.

[27]	 S. D. Halloway, Programming Clojure, The Prag-
matic Bookshelf, 2 edition, 2012.

[28]	 B. Goetz, Java Concurrency in Practice, Addison-
Wesley Professional,1 edition, 2006.

[29]	 S. Thrun et al., The monk’s problems: A per-
formance comparison of different learning al-
gorithms. Technical Report CMU-CS-91-197,
Carnegie Mellon University, 1991.

[30]	 P. Sadowski, Notes on backpropagation, homepage:
https://www.ics.uci.edu/~pjsadows/notes.pdf
(online).

[31]	 K. J. Lang, M. Witbrock, Learning to Tell Two Spirals
Apart In: Proceedings of 1988 Connectionists Mod-
els Summer School. Morgan Kaufmann, San Mateo
CA, 1989, 52-59. DOI: 10.13140/2.1.3459.2329.

[32]	 Yale Face Database, homepage: http://vision.
ucsd.edu/~iskwak/ExtYaleDatabase/Yale/Face/
Database.htm (online).

[33]	 Y. Bengio, “Practical recommendations for
gradient-based training of deep architectures”,
arXiv:1206.5533v2, 2012.

[34]	 M. Hüsken, Y. Jin, B. Sendhoff, Soft Computing
(2005) 9: 21. DOI: 10.1007/s00500-003-0330-y.

[35]	 Y. Y. Dorogyy et al., “Qualitative evaluation method
of IT-infrastructure elements functioning”. IEEE
International Black Sea Conference on Communi-
cations and Networking (BlackSeaCom), 170–174,
2014.

