PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exchange of Carbon Dioxide between the Atmosphere and the Maize Field Fertilized with Digestate from Agricultural Biogas Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to determine the exchange rate of carbon dioxide between the atmosphere and the maize field fertilized with the digestate from an agricultural biogas plant. The studies considered both the amount of net carbon dioxide emission which is the difference between the amount of this gas absorbed by vegetation and its amount emitted from the whole ecosystem of the field as well as the emission resulting only from the changes occurring in the soil. The CO2 emission from the entire field was measured by the eddy covariance method with a set of LI-7500A analyzer (LI-COR Biosciences, USA) for measuring the CO2/H2O concentration in air and 3-axis WindMaster ultrasonic anemometer (GILL, UK). The data from the analyzers were recorded at 10 Hz, while the CO2 streams were calculated using the EddyPro 5 software. The soil emission was determined with the chamber method using the automated ACE measurement system (ADC BioScientific, UK). Until the maize reached maturity, the study was carried out once a week, at 10.00 – 14.00. During each measurement day, the basic meteorological parameters were measured as well. The obtained results showed a clear relationship between the plants development phase and the size of the net CO2 exchange. The negative values of carbon dioxide streams, indicating the absorption of this gas from the atmosphere, were observed already in the case of plants with a height of approx. 25 cm, while the maximum values were reached after the release of panicles by maize. The carbon dioxide emission from soils, measured at the same time, was maintained throughout the entire research period at a similar low level, undergoing only slight fluctuations associated with variable soil moisture. The study showed that the maize field, almost throughout all growing season, can be treated as a sink of atmospheric carbon dioxide, reducing its emission from agriculture.
Słowa kluczowe
Rocznik
Strony
145--151
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Albiac J., Kahil T., Notivol E., Calvo E. 2017. Agriculture and climate change: Potential for mitigation in Spain. Science of the Total Environment, 592, 495–502.
  • 2. Anderson-Glenna M., Morken J. 2013. Greenhouse gas emissions from on-farm digestate storage facilities. Tel-Tek report no. 2213040–1, Norway.
  • 3. Arodudu O. T., Helming K., Voinov A., Wiggering H. 2017. Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock. Applied Energy, 198, 426–439.
  • 4. Budzianowski W. M., Postawa K. 2017. Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures. Renewable and Sustainable Energy Reviews, 68, 852–868.
  • 5. CAST (Council for Agricultural Science and Technology). 2011. Carbon sequestration and greenhouse gas fluxes in agriculture: challenges and opportunities. Task Force Report No.142, CAST, Ames, Iowa, USA.
  • 6. Chen H., Fan M., Kuzyakov Y., Billen N., Stahr K. 2014. Comparison of net ecosystem CO2 exchange in cropland and grassland with an automated closed chamber system. Nutr Cycl Agroecosyst, 98:113–124.
  • 7. Crolla A., Kinsley C., Pattey E. 2013. Land application of digestate. in: The biogas handbook. Science, production and application. Woodhead Publishing Series in Energy, Number 52.
  • 8. Czubaszek R., Wysocka-Czubaszek A. 2018. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant. Int. Agrophys., 32, 29–37.
  • 9. Eugster W., Merbold L. 2015. Eddy covariance for quantifying trace gas fluxes from soils. Soil, 1, 187–205.
  • 10. Gelfand I., Robertson G. P. 2015. Mitigation of greenhouse gas emissions in agricultural ecosystems. Pages 310–339. In: Hamilton S. K., Doll J. E., Robertson G. P. (Eds.). The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford University Press, New York, New York, USA.
  • 11. Hafner S., Unteregelsbacher S., Seeber E., Lena B., Xu XL., Li XG., Guggenberger G., Miehe G., Kuzyakov Y. 2012. Effect of grazing on carbon stocks and assimilate partitioning in Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob. Change Biol., 18, 528–538.
  • 12. Gerin P. A., Vliegen F., Jossart J-M. 2008. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology, 99, 2620–2627.
  • 13. Hamelin L., Naroznova I., Wenzel H. 2014. Environmental consequences of different carbon alternatives for increased manure-based biogas. Applied Energy, 114, 774–782.
  • 14. KOBIZE. 2016. Poland’s national inventory report 2016. Greenhouse Gas Inventory for 1988–2014. [online]: http://www.kobize.pl/uploads/materialy/materialy_do_pobrania/krajowa_inwentaryzacja_emisji/NIR_2016_POL_05.2016.pdf.
  • 15. LDB. 2018. Growing of crops (Growing of other selected crops). Local Data Bank. Central Statistical Office, Warsaw, https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica.
  • 16. Lei HM, Yang DW. 2010. Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain. Global Change Biol., 16, 2944–2957.
  • 17. Nkoa R. 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development. Springer Verlag/ EDP Sciences/INRA, 34(2), 473–492.
  • 18. Oertel C., Matschullat J., Zurbaa K., Zimmermanna F., and Erasmi S. 2016. Greenhouse gas emissions from soils – A review. Chemie der Erde, 76, 327–352.
  • 19. Pawłowski A., Pawłowska M., Pawłowski L. 2017. Mitigation of greenhouse gases emissions by management of terrestrial ecosystem. Ecol. Chem. Eng S., 24(2), 213–221.
  • 20. Pezzolla D., Bol R., Gigliotti G., Sawamoto T., López A. L., Cardenas L. Chadwick D. 2012. Greenhouse gas (GHG) emissions from soils amended with digestate derived from anaerobic treatment of food waste. Rapid Commun. Mass Spectrom., 26, 2422–2430.
  • 21. Reichstein M., Stoy P.C., Desai A.R., Lasslop G., Richardson A.D. 2012. Partitioning of net fluxes. In: Aubinet M., Vesala T., Papale D. (Eds.). Eddy covariance: a practical guide to measurement and data analysis. Dordrecht: Springer.
  • 22. Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., Herrero, M. 2013. Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Clim. Chang., 117, 677–690.
  • 23. Smith, P., Bustamante,M., Ahammad, H., et al. 2014. Agriculture, Forestry and Other Land Use (AFOLU). In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., et al. (Eds.). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • 24. Szlachta J., Tupieka M. 2013. Analysis of profitability of maize production designated for silage as a substrate for a biogas plant. (In Polish), Inżynieria Rolnicza, Z. 3(145) T.1, 375–386.
  • 25. Tilman D., Balzer C., Hill J., Befort B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences USA 108, 20260–20264.
  • 26. Wolf S., Eugster W., Potvin C., Buchmann N. 2011. Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama. Agricultural and Forest Meteorology, 151, 1139–1151.
  • 27. WRB. 2015. World reference base for soil resources 2014. Update 2015. World soil resources reports No. 106, FAO, Rome.
  • 28. Xu M., Shang H. 2016. Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology, 203, 16–28.
  • 29. Zhang L., Sun R., Xu Z., Qiao C., Jiang G. 2015. Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLoS ONE, 10(3), e0120660.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88272867-8fc8-4e28-b1ee-5f1904fa07bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.