PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Industrial robot repeatability testing with high speed camera Phantom v2511

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Apart from accuracy, one of the parameters describing industrial robots is positioning accuracy. The parameter in question, which is the subject of this paper, is often the decisive factor determining whether to apply a given robot to perform certain tasks or not. Articulated robots are predominantly used in such processes as: spot welding, transport of materials and other welding applications, where high positioning repeatability is required. It is therefore essential to recognise the parameter in question and to control it throughout the operation of the robot. This paper presents methodology for robot positioning accuracy measurements based on vision technique. The measurements were conducted with Phantom v2511 high-speed camera and TEMA Motion software, for motion analysis. The object of the measurements was a 6-axis Yaskawa Motoman HP20F industrial robot. The results of measurements obtained in tests provided data for the calculation of positioning accuracy of the robot, which was then juxtaposed against robot specifications. Also analysed was the impact of the direction of displacement on the value of attained pose errors. Test results are given in a graphic form.
Słowa kluczowe
Twórcy
autor
  • Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, 36 Nadbystrzycka Street, 20-816 Lublin
autor
  • The State School of Higher Education, The Institute of Technical Sciences and Aviation, 54 Pocztowa Street, 22-100 Chełm, Poland
autor
  • The State School of Higher Education, The Institute of Technical Sciences and Aviation, 54 Pocztowa Street, 22-100 Chełm, Poland
autor
  • The State School of Higher Education, The Institute of Technical Sciences and Aviation, 54 Pocztowa Street, 22-100 Chełm, Poland
Bibliografia
  • 1. Abderrahim M., Khamis A., Garrido S. and Moreno L. Accuracy and calibration issues of industrial manipulators. Industrial Robotics – Programming, Simulation and Applications (Low Kin Huat, (Ed.)), Verlag Robert Mayer- Scholz, Mammendorf, Germany, 131–146.
  • 2. Alici G. and Shirinzadeh B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory, 40(8), 2005, 879–906.
  • 3. Angelidis A. and Vosniakos G.Ch. Prediction and compensation of relative position error along industrial robot end-effector paths. International Journal of Precision Engineering and Manufacturing, 15(1), 2014, 63–73.
  • 4. Głowacz A. Recognition of acoustic signals of synchronous motors with the use of MoFS and selected classifiers. Measurement Science Review, 15(4), 2015, 167–175.
  • 5. Józwik J. and Czwarnowski M. Angular positioning accuracy of rotary table and repeatability of five-axis machining centre DMU 65 MonoBLOCK. Advances in Science and Technology Research Journal, 9(28), 2015, 89–95.
  • 6. Józwik J., Semotiuk L. and Kuric I. Diagnostic of CNC lathe with QC 20 Ballbar system. Advances in Science and Technology Research Journal, 9(28), 2015, 96–102.
  • 7. Józwik J., Ostrowski D., Wieczorek M. and Czwarnowski M. Evaluation of accuracy and positioning repeatability of an industrial robot. Advanced technologies in designing, engineering and manufacturing: Research problems,(T. Jachowicz, M. Kłonica, (Ed.)), Prefekta Info Renata Markisz, Lublin, Poland, 2015, 146–156.
  • 8. Józwik J., Kuric I., Ostrowski D. and Dziedzic K. Industrial robot accuracy testing with QC20-W Ballbar diagnostic system. Manufacturing Technology, 16(3), 2016, 519–524.
  • 9. Kiersztyn M., Wolszczak P. and Płaska S. Automatyczna kontrola pozycjonowania robota w elastycznym gnieździe wytwarzania z zastosowaniem technik wizyjnych. Mechanik, 87(8–9), 2014, 281–290.
  • 10. Krolczyk G.M., Nieslony P., K Krolczyk J.B., Samardzic I., Legutko S., Hloch S., Barrans S. and Maruda R.W. Influence of argon pollution on the weld Surface Morphology. Measurement, 70, 2015, 203–213.
  • 11. Krolczyk G.M., Krolczyk J.B., Maruda R.W., Legutko S. and Tomaszewski M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement, 88, 2016, 176–185.
  • 12. Maruda R.W., Krolczyk G.M., Feldshtein E., Szydlowski M., Legutko S., Pusavec F. and Sobczak-Kupiec A. A study on droplets sizes, their distribution and heat exchange for Minimum Quantity Cooling Lubrication (MQCL), International Journal of Machine Tools and Manufacture, 100, 2016, 81–92.
  • 13. Nubiola A. and Bonev I. Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer – Integrated Manufacturing, 29(1), 2013, 236–245.
  • 14. Nubiola A., Slamani M. and Bonev I. A new method for measuring a large set of poses with a single telescopic ballbar. Precision Engineering, 37, 2013, 451–460.
  • 15. Nubiola A. and Bonev I. Absolute robot calibration with a single telescoping ballbar. Precision Engineering, 38, 2014, 472–480.
  • 16. Slamani M., Joubair A. and Bonev I. A comparative evaluation of three industrial robots using three reference measuring techniques, Industrial Robot. An International Journal, 42(6), 2015, 572–585.
  • 17. Slamani M., Nubiola A. and Bonev I. Assessment of the positioning performance of an industrial robot. Industrial robot: An International Journal, 39(1), 2012, 57–68.
  • 18. Wojciechowski S., Chwalczuk T., Twardowski P. and Krolczyk G.M. Modeling of cutter displacements during ball end milling of inclined surfaces. Archives of Civil and Mechanical Engineering, 15(4), 2015, 798–805.
  • 19. Wu K., Brueninghaus J., Johnen B. and Kuhlenkoetter B. Applicability of stereo high speed camera systems for robot dynamics analysis. International Conference on Control, Automation and Robotics, 2015, 44–48.
  • 20. Young K. and Pickin C.G. Accuracy assessment of the modern industrial robot. Industrial robot: An International Journal, 39(6), 2000, 427–436.
  • 21. Zhenhua W., Hui X., Guodong CH., Rongchuan S. and Sun L. A distance error based industrial robot kinematic calibration method. Industrial Robot: An International Journal, 41(5), 2014, 439–446.
  • 22. ISO 9283:1998 Manipulating industrial robotsPerformance criteria and related test methods.
  • 23. www.robotraders.co.uk (24.07.2015).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8826b8a1-3906-4961-ad48-63e3e4a47ebc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.