Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to improve the thermal decomposition performance of cyclotrimethylenetrinitramine (RDX), graphene-based Cu-MOF derivative catalysts were prepared by solvothermal and heat treatment. Transition metal ions were ligated to the surface of graphene oxide (GO) by organic ligands, and then heat-treated to obtain two-dimensional reduction-oxidation graphene-based metal cluster catalysts. The morphology and structure of these catalysts at different temperatures and their effects on the thermal decomposition of RDX were studied. The results showed that the prepared GO/Cu-MOF has a small particle size and good dispersibility. At 300 ℃, the catalyst exhibited a porous structure. Thermal analysis showed that the decomposition temperature of RDX was reduced by the addition of a small amount of this catalyst, which may be due to the good conductivity of graphene oxide and the strong gain and loss electron ability of the metal clusters. The presence of graphene oxide increases the catalytic activity of metal clusters, and the metal clusters and graphene oxide have a positive synergistic effect, thus improving the thermal decomposition performance of RDX.
Rocznik
Tom
Strony
429--449
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Internal Medicine Department of the North Hospital of Taiyuan Taihang Hospital, Taiyuan 030000, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
Bibliografia
- [1] Naya, T.; Kohga, M. Influences of Particle Size and Content of RDX on Burning Characteristics of RDX-based Propellant. Aerosp. Sci. Technol. 2014, 32(1): 26-34; https://doi.org/10.1016/j.ast.2013.12.004.
- [2] Liang, T.X.; Zhang, Y.K.; Ma, Z.L.; Guo, M.L.; Xiao, Z.L.; Zhang, J.X.; Dong, M. Y.; Fan, J.C.; Guo, Z.H.; Liu, C.T. Energy Characteristics and Mechanical Properties of Cyclotrimethylenetrinitramine (RDX)-based Insensitive High-Energy Propellant. J. Mater. Res. Technol. 2020, 9(6): 15313-15323; https://doi.org/10.1016/j.jmrt.2020.09.132.
- [3] Babuk, V.A.; Ivonenko, A.N.; Nnizyaev, A.A. Calculation of the Characteristics of Agglomerates During Combustion of High-Energy Composite Solid Propellants. Combust. Explos. Shock Waves 2015, 51(5): 549-559; https://doi.org/10.1134/s0010508215050056.
- [4] Zhao, G.; Lu, M. Theoretical Studies on the Structures and Detonation Properties of Nitramine Explosives Containing Benzene Ring. J. Mol. Model. 2012, 18(6): 2443-2451; https://doi.org/10.1007/s00894-011-1267-1.
- [5] Han, S.; Kim, C. Integrated Fluid-Structure Simulation for Full Burning of a Solid-Propellant Rocket Interior. J. Propul. Power 2014, 30(4): 883-900; https://doi.org/10.2514/1.B35107.
- [6] Liu, R.; Zhang, T.; Yang, L.; Zhou, Z. Dynamic Pressure Thermal Analysis of Double-base Propellants Containing RDX. Cent. Eur. J. Chem. 2014, 12(6): 672-677; https://doi.org/10.2478/s11532-014-0524-4.
- [7] Li, G.P.; Ni, Z.C.; Liu, Y.Z.; Xia, M.; Luo, Y.J. Thermal Performance and Decomposition Kinetics of RDX/AP/SiO2 Intermolecular Explosive. J. Therm. Anal. Calorim. 2018, 132(3): 1969-1978; https://doi.org/10.1007/s10973-018-7049-6.
- [8] Feng, S.Q.; Guo, F.; Yuan, C.S.; Cheng, X.R.; Wang, Y.Q.; Zhang, H.J.; Chen, J; Su, L. Effect of Neutron Irradiation on Structure and Decomposition of α-RDX: A ReaxFF Molecular Dynamics Study. Comput. Theor. Chem. 2023, 1219 paper 113965; https://doi.org/10.1016/j.comptc.2022.113965.
- [9] Chaturvedi, S.; Dave, P.N. A Review on the Use of Nanometals as Catalysts for the Thermal Decomposition of Ammonium Perchlorate. J. Saudi Chem. Soc. 2013, 17(2): 135-149; https://doi.org/10.1016/j.jscs.2011.05.009.
- [10] Zhu, Y.L.; Huang, H.; Ren, H.; Jiao, Q.J. Influence of Aluminum Particle Size on Thermal Decomposition of RDX. J. Energ, Mater. 2013, 31(3): 178-191; https://doi.org/10.1080/07370652.2012.688788.
- [11] Xiong, F.; Xu, R.; Nie, H.; Yan, Q.; Wu, Y.; Liu, J.; Chen, J.; Sun, Y. Mechanistic Study of the Influence of Aluminum Nanoparticles on the Pressure Sensitivity of 1,3,5-Trinitro-1,3,5-triazinane (RDX) Thermal Decomposition. Colloids Surf., A 2023, 667 paper 132439; https://doi.org/10.1016/j.colsurfa.2023.132439.
- [12] Yan, Q.L.; Zhao, F.Q.; Kuo, K.K.; Zhang, X.H.; Zeman, S.; DeLuca, L.T. Catalytic Effects of Nano Additives on Decomposition and Combustion of RDX-, HMX-, and AP-based Energetic Compositions. Prog. Energy Combust. Sci. 2016, 57: 75-136; https://doi.org/10.1016/j.pecs.2016.08.002.
- [13] Song, N.; Liu, J.; Yang, L.; Liu, P. Preparation of Nano-Spherical Cu-en and Its Catalytic Study on the Performance of Solid Propellant. Propellants Explos., Pyrotech. 2020, 45(11): 1799-1804; https://doi.org/10.1002/prep.202000147.
- [14] Kou, Y.; Luo, P.; Xiao, L.; Xin, Y.; Zhang, G.; Hu, Y.; Yang, J.; Gao, H.; Zhao, F.; Jiang, W.; Hao, G. New Insights in Nano-Copper Chromite Catalyzing Ultrafine AP: Evaluation of Dispersity and Mixing Uniformity. Def. Technol. 2024, 32: 120-133; https://doi.org/10.1016/j.dt.2023.04.004.
- [15] Nie, H.; Yang, X.H.; Yang, S.L.; Fershtat, L.; Yan, Q.L. The Enhanced Catalytic Decomposition Behaviors of RDX by Using Porous Activated Carbon Loaded with Nanosized Metal Oxides. J. Therm. Anal. Calorim. 2023, 148(10): 4255-4266; https://doi.org/10.1007/s10973-023-11987-8.
- [16] Liu, B.; Wang, W.; Wang, J.; Zhang, Y.; Xu, K.; Zhao, F. Preparation and Catalytic Activities of CuFe2O4 Nanoparticles Assembled with Graphene Oxide for RDX Thermal Decomposition. J. Nanopart. Res. 2019, 21 paper 48; https://doi.org/10.1007/s11051-019-4493-6.
- [17] Dong, S.; Hu, J.; Qin, Z.; Li, H.; Chen, S.; Chen, Z.; Xu, K. Design and Performance of a Novel High-Efficiency WO3-based Combustion Catalyst and Its Catalytic Mechanism. Appl. Surf. Sci. 2023, 624 paper 157130; https://doi.org/10.1016/j.apsusc.2023.157130.
- [18] Chen, C.; Lu, J.; Zhang, B.; Gou, X.; Wu, T.; Chen, Z.; Liu, W.; Zhang, J.; Liang, T.; Yang, Y.; Xiao, F. Study on the Effect of Graphite-based Materials on the Reactivity of Activated Aluminum Composites in Different Forms of Water. J. Cleaner Prod. 2024, 435 paper 140607; https://doi.org/10.1016/j.jclepro.2024.140607.
- [19] Hong, C.; Jin, X.; Totleben, J.; Lohrman, J.; Harak, E.; Subramaniam, B.; Chaudhari, R.; Ren, S. Graphene Oxide Stabilized Cu2O for Shape Selective Nanocatalysis. J. Mater. Chem. A 2014, 2(20): 7147-7151; https://doi.org/10.1039/c4ta00599f.
- [20] Wan, C.; Li, J.; Chen, S.; Wang, W.; Xu, K. In situ Synthesis and Catalytic Decomposition Mechanism of CuFe2O4/g-C3N4 Nanocomposite on AP and RDX. J. Anal. Appl. Pyrolysis 2021, 160 paper 105372; https://doi.org/10.1016/j.jaap.2021.105372.
- [21] Wang, W.; Liu, B.; Xu, K.; Zu, Y.; Song, J.; Zhao, F. In-situ Preparation of MgFe2O4-GO Nanocomposite and Its Enhanced Catalytic Reactivity on Decomposition of AP and RDX. Ceram. Int. 2018, 44(15): 19016-19020; https://doi.org/10.1016/j.ceramint.2018.07.145.
- [22] Kottappara, R.; Pillai, S.C.; Vijayan, B.K. Copper-based Nanocatalysts for Nitroarene Reduction ‒ A Review of Recent Advances. Inorg. Chem. Commun. 2020, 121 paper 108181; https://doi.org/10.1016/j.inoche.2020.108181.
- [23] Mantasha, I.; Saleh, H.A.M.; Qasem, K.M.A.; Shahid, M.; Mehtab, M.; Ahmad, M. Efficient and Selective Adsorption and Separation of Methylene Blue (MB) from Mixture of Dyes in Aqueous Environment Employing a Cu(II) Based Metal Organic Framework. Inorg. Chim. Acta 2020, 511 paper 119787; https://doi.org/10.1016/j.ica.2020.119787.
- [24] Chen, Y.; Huang, N.; Liang, Y. Preparation of CeO2/Cu-MOF/GO Composite for Efficient Electrocatalytic Oxygen Evolution Reaction. Ionics 2021, 27(10): 4347-4360; https://doi.org/10.1007/s11581-021-04173-z.
- [25] Deng, N.; Wang, L.; Feng, Y.; Liu, M.; Li, Q.; Wang, G.; Zhang, L.; Kang, W.; Cheng, B.; Liu, Y. Co-based and Cu-based MOFs Modified Separators to Strengthen the Kinetics of Redox Reaction and Inhibit Lithium-Dendrite for Long-Life Lithium-Sulfur Batteries. Chem. Eng. J. 2020, 388 paper 124241; https://doi.org/10.1016/j.cej.2020.124241.
- [26] Kitamura, H. Semi-Analytic Theory of Multiphonon Effects on the Static Structure Factors of Warm Solids. Acta Crystallogr., Sect. A 2022, 78: 415-421; https://doi.org/10.1107/s2053273322006441.
- [27] Juskenas, R.; Avizinis, D.; Kalinauskas, P.; Selskis, A.; Giraitis, R.; Pakstas, V.; Karpaviciene, V.; Kanapeckaite, S.; Mockus, Z.; Kondrotas, R. XRD, SEM and photoelectrochemical characterization of ZnSe electrodeposited on Cu and Cu-Sn substrates. Electrochim. Acta 2012, 70: 118-123; https://doi.org/10.1016/j.electacta.2012.03.103.
- [28] Yan, J.; Wang, H.; Jin, B.; Zeng, M.; Peng, R. Cu-MOF Derived Cu/Cu2O/C Nanocomposites for the Efficient Thermal Decomposition of Ammonium Perchlorate. J. Solid State Chem. 2021, 297 paper 122060; https://doi.org/10.1016/j.jssc.2021.122060.
- [29] Bai, F.; Guo, W.; Lu, X.; Liu, Y.; Guo, M.; Li, Q.; Sun, Y. Kinetic Study on the Pyrolysis Behavior of Huadian Oil Shale via Non-Isothermal Thermogravimetric Data. Fuel 2015, 146: 111-118; https://doi.org/10.1016/j.fuel.2014.12.073.
- [30] Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger Equation. Thermochim. Acta 2012, 540: 1-6; https://doi.org/10.1016/j.tca.2012.04.008.
- [31] Yuan, S.; Li, Z.Q.; Luo, Q.P.; Duan, X.H.; Pei, C.H. Preparation and Thermal Decomposition Properties of Nitrated Graphene Oxide (NGO)/RDX nano-Energetic Composites. J. Therm. Anal. Calorim. 2020, 139(3): 1671-1679; https://doi.org/10.1007/s10973-019-08613-x.
- [32] Fang, Z.Q.; Li, S.K.; Liu, J.P.; Yu, C.; Zheng, D.S.; Qiao, M.Z. Effect and Mechanism of Lithium Aluminium Hydride on the Pyrolysis Process of RDX. J. Anal. Appl. Pyrolysis 2022, 167 paper 105690; https://doi.org/10.1016/j.jaap.2022.105690.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8825e47d-9321-4909-bbc8-0dad11fbea4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.