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Abstract 

The paper presents the formulation and solution of Γ-type frame damping vibration. The physical system 
model takes into account the energy dissipation of the vibrating frame due to the internal vibration damping of 
the viscoelastic frame material and the constructional damping in the place of frame bolt support. As the results 
of the problem solution, the damping and system geometry effects on the first frame eigenvalue (damped 
frequencies and coefficients of amplitude decay factor) were presented. 
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1. Introduction 

The constructional damping vibration problems of frames are extremely significant from 
the point of view of mechanical structural designs. Also the structures of frames in 
a square Γ-type [1], T-type [2, 3, 4] or other two or three bar frames [5] form have been 
described in many scientific publications. Experimental, theoretical and numerical study 
associated with Γ type frame with reference to stability and free vibrations, have been 
carried out in the monograph [1].  

The type of instability of a T-type frame with joint mass M subjected to 
a compressive follower force P applied at the joint was researched in the work [2]. In 
paper [3] a formulation and solution for the problem of damped vibration in T-type 
frame was presented. The energy dissipation in a vibrating frame as a result of construc-
tional damping in the points of the frame mounting and the supports in physical model 
was also took into account. T-type frame theoretical, numerical and experimental re-
search on the stability and free vibrations was also described in [4]. The author investi-
gated frame loaded by longitudinal force in relation to its bolt. 

Importance of two-bar frames research was emphasized by describing the variational 
method for investigation of the stability of a rectangular two-bar frame in the work [5]. 



258 

Also interesting studies in the field of numerical procedure for the complex frequencies 
and vibration modes evaluation were carried out in the article [6]. Interesting research 
results related to the effects of small both internal and external damping on the stability 
of disturbed non-conservative systems could be found in the paper [7]. 

In this paper the formulation and solution of Γ-type frame damped vibration was pre-
sented. In the vibration model, internal damping of viscoelastic material in frame (rheo-
logical model by Kelvin-Voigt) and constructional damping in the place of frame bolt 
support was taken into account. As the results of the problem solution, the damping and 
system geometry effects on the first frame eigenvalue were presented. The results ob-
tained in the study were presented in 2D figures and spatial presentations. 

2. Physical and mathematical model 

Physical model of the considered system is shown in Fig. 1. Considered frame consists 
of a column with an l1 length and l2 long bolt. Constructional damping of the bolt support 
vibrations was modelled by viscous rotary damper with a damping factor denoted as CR. 
Viscoelastic material has been characterized by the Young's modulus Ei and the viscosity 
coefficient Ei* of frame material.  
 

 

Figure 1. Physical model of the Γ-type frame 

The equations of motion of the individual frame beams can be written as: 
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where:  
Wi(x,t) –  the lateral displacement for individual beams of frame, i = 1,2, 
Ai – the cross-section area of the beams, 
Ji – the moment of inertia for beam section, 
Ei – Young's modulus, 
Ei* – material viscosity coefficient, 
ρi – the density of the beam material, 
x – space coordinate, 
t – time. 
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Geometric boundary conditions and continuities are as follows: 
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The boundary issues are complemented by the natural boundary conditions of 
the form: 
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 (3) 

The last boundary condition for x2=0 in many publications is assumed to be 
0),0(2 =tW  (cf. [8]). Adoption of such condition requires the assumption that during the 

vibration the vertical rod (pole) of the frame at the end of x1=l1 performs so small vibra-
tions (displacement) that they could be identified as negligible. However, assuming that 
displacement is 0),( 11 ≠tlW  and taking into account the restoring force of the bending 

frame (slender system) in x2=0, then one of the variances of the potential energy element 

is 
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3. The solution to the problem 

The solutions of the equation (1) are as follows: 

 tj
ii exwtxW

*

)(),( ω=  (4) 

where: ω* – the complex eigenvalue of the system, 1−=j . 

By substituting (4) to (1-3) we obtain: 

  (5) 

where: 

 . (6) 

The boundary conditions (after the separation of variables) of considered system, are 
as the following: 
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The solution of equations (5) is expressed in the form of functions: 
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The substitution of the solution (8) into equation (7) leads to a system of equations 
because of the constant Dki (k=1,2-4). The solution of such a system is the solution of 
boundary problem and it leads determine the eigenvalues of studied system, in the form 
of damped frequencies  Re(ω*) and the amplitude decay factor Im(ω*).   

4. The results of numerical computations 

The study of the analyzed frame damping vibrations were performed for the following 
geometrical and material data: (EJ)i = 6.443 [Nm2], (ρA)i = 15.433 [kg/m] and for 
the beam lengths: l1 =2 and l2 = 0.5. Calculations were made after the adoption of 
the dimensionless damping coefficients and the relationship of moments of inertia of 
the column sections and bolt frame J in the form of: 
 

w i
IV ( x ) − γ iw i ( x ) = 0, i = 1,2

γ i =
ρ i Aiω

*2

(E i + jE i
*ω *)J i
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In Figures 2-5 results of the calculation are shown. In Fig. 2 the results of research of 
dependency between the frame eigenvalues and constructional damping in the place of 
bolt support. 

 

 

Figure 2. The dependence between the real parts (Re(ω1
*)) and imaginary parts (Im(ω1

*))  
of the first beam eigenvalue and the constructional damping µ 

In the next figure (Fig. 3) the results of frame eigenvalues (with the selected con-
structional damping value µ = 0.2) changes along with the bolt length (l2) changes were 
presented. 

 
Figure 3.  The dependence between the real parts (Re(ω1

*)) and imaginary parts 
(Im(ω1

*))  of the first beam eigenvalue and the horizontal beam  l2 

The results of studies on the impact of changes in stiffness of the bolt and the column 
of the frame on the eigenvalues of the system are shown in Fig. 4. The constructional 
damping factor in this case also was  µ = 0.2. By changing the relation between the mo-
ments of cross-section inertia J, in each case constant inertia moment J2 was taken. 

In Figure 5 the results of research on the frame's viscoelastic material internal damp-
ing influence on its eigenvalues were presented.  

η =
E i

*

aE i

J =
J2

J1

.
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In Figure 6 the summary graphs of the dependence of the real (Re(ω1
*)) and imagi-

nary parts (Im(ω1
*))  of the first beam eigenvalue in analyzed system, relative to the 

constructional damping µ parameter and internal damping coefficient η, were presented. 
 

 
Figure 4. The dependence between the real parts (Re(ω1

*)) and imaginary parts (Im(ω1
*))  

of the first beam eigenvalue and the beam cross-section J moment of inertia 
 

 
Figure 5. The dependence between the real parts (Re(ω1

*)) and imaginary parts (Im(ω1
*)) 

of the first beam eigenvalue and internal damping coefficient η 

       
Figure 6. The dependence between the real parts (Re(ω1

*)) and imaginary parts (Im(ω1
*)) 

of the first beam eigenvalue and the constructional damping parameter µ and internal 
damping coefficient η 
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4. Conclusions 

The paper presents a model of damped vibrations of Γ-type frame. Based on the obtained 
results it could be concluded that including constructional damping mounting, causes 
significant changes in the frame eigenvalues. The change of the damping coefficient µ, 
significantly affects on the first eigenvalue (both on the damped frequency Re(ω1

*) and 
the amplitude decay factor Im(ω1

*)).The damped frequency Re(ω1
*) is increasing to 

a value corresponding to the two-sided rigid frame mounting. It can be seen that with 
the increase of the rotary damper damping coefficient, the amplitude decay coefficient 
rises to a maximum value and then tends to 0 when µ → ∞ .  

Analyzing the impact of the frame bolt length on its eigenvalues, it could be conclud-
ed that that suitable damped vibrations Re(ω1

*)  decrease with the elongation of the bolt 
(l2), which was to be expected. However, the amplitude decay factor increases to a max-
imum value, and then decreases. 

Significant changes in the eigenvalues of research system could be seen when chang-
ing relations of cross-section inertia moments of the two parts of frame. The increase in 
the ratio of J moments causes stronger vibration damping in the system (growth of coef-
ficient Im(ω1

*)).  The inclusion of internal damping in the frame vibration model, causes 
a slight change in the first eigenvalue  (damped vibrations Re(ω1

*) as well as the ampli-
tude decay factor Im(ω1

*)). 
Based on the research it could be determined such geometric parameters of 

the frame, for which the amplitude decay factors are greatest, and hence it is possible to 
design systems providing minimum vibration amplitudes. 
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