PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The strength behaviour of transitional group A-2-7 soil stabilized with fly ash and lime powder

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent works aimed to investigate geotechnical properties of Transitional Group A-2-7 (TGA-2-7) soil affected by the use of hydrated lime and fly ash class F, by-products from quarries and a cement factory in Jordan, to compensate for the gap in the granular distribution. Host soil was exposed to various proportions of fly ash and lime powder. The blended specimens were subjected to different tests related to index properties, including Atterberg limits, compaction properties and California bearing ratio. The results demonstrate that 2% fly ash led to a reduction in the plasticity index from 19% to 10%, while lime powder reduced it from 19% to 13%. A sufficient improvement of maximum dry density was observed at 20% lime addition and increased from 15.11 kN/m3 to 16.29 kN/m3. California bearing ratio that measures the strength soil linearly increased up to 10% induced by 20% lime addition.
Rocznik
Strony
511--522
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Amman Arab University, Civil Engineering Department, Faculty of Engineering, P.O Box. 2234, Amman 11953, Jordan
Bibliografia
  • [1] J.I. Chang, G.C. Cho, Geotechnical Engineering Behaviors of Gellan Gum Biopolymer Treated Sand. Canadian Geotechnical Journal 53 (10), 1-38 (2016a). DOI: https://doi.org/10.1139/cgj-2015-0475.
  • [2] J.I. Chang, G.C. Cho, Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 8, 251-273 (2016b). DOI: https://doi.org/10.3390/su8030251.
  • [3] C. Guo, Y. Cui, Pore Structure Characteristics of Debris Flow Source Material in the Wenchuan Earthquake Area. Engineering Geology 267, 105499 (2020). DOI: https://doi.org/10.1016/j.enggeo.2020.105499.
  • [4] J. Park, J.C. Santamarina, Revised Soil Classification System for Coarse-Fine Mixtures. J. Geotech. Geoenviron. Eng. 143 (8), 04017039 (2017). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001705.
  • [5] D. Peng, Q. Xu, F. Liu, Y. He, S. Zhang, X. Qi, K. Zhao, X. Zhang, Distribution and Failure Modes of the Landslides in Heitai Terrace, China. Eng. Geol. 236, 97-110 (2018). DOI: https://doi.org/10.1016/j.enggeo.2017.09.016.
  • [6] Y. F.Cui, X.J. Zhou, C.X. Guo, Experimental Study on the Moving Characteristics of Fine Grains in Wide Grading Unconsolidated Soil Under Heavy Rainfall. J. Mt. Sci. 14 (3), 417-431 (2017). DOI: https://doi.org/10.1007/s11629-016-4303-x.
  • [7] W.B. Chen, K. Liu, W.Q. Feng, L. Borana, J.H. Yin, Influence of Matric Suction on Nonlinear Time-Dependent Compression Behavior of a Granular Fill Material. Acta Geotechnica 15 (3), 615-633 (2020). DOI: https://doi.org/10.1007/s11440-018-00761-y.
  • [8] Z. Zhou, H. Yang, X. Wang, B. Liu, Model Development and Experimental Verification for Permeability Coefficient of Soil-Rock Mixture. Int. J. Geomech. 17 (4), 04016106 (2017). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000768.
  • [9] R. Salgado, P. Bandini, A. Karim, Shear Strength and Stiffness of Silty Sand. J. Geotech. Geoenviron. Eng. 126 (5), 451-462 (2000). DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
  • [10] T. Ueda, T. Matsushima, Y. Yamada, Effect of Particle Size Ratio and Volume Fraction on Shear Strength of Binary Granular Mixture. Granular Matter 13 (6), 731-742 (2011). DOI: https://doi.org/10.1007/s10035-011-0292-1.
  • [11] P. Ruggeri, D. Segato, V.M.E. Fruzzetti, G. Scarpelli, Evaluating the Shear Strength of a Natural Heterogeneous Soil Using Reconstituted Mixtures. Géotechnique 66 (11), 941-946 (2016). DOI: https://doi.org/10.1680/jgeot.15.P.022.
  • [12] M.M. Monkul, G. Ozden, Compressional Behaviour of Clayey Sand and Transition Fines Content. Engineering Geology 89 (3), 195-205 (2007). DOI: https://doi.org/10.1016/j.enggeo.2006.10.001.
  • [13] T.G. Ham, Y. Nakata, R.P. Orense, M. Hyodo. Influence of Gravel on the Compression Characteristics of Decomposed Granite Soil.” J. Geotech. Geoenviron. Eng. 136 (11), 1574-1577 (2010). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000370.
  • [14] N.J. Jiang, K. Soga, M. Kuo, Microbially Induced Carbonate Precipitation for Seepage-Induced Internal Erosion Control in Sand-Clay Mixtures. Journal of Geotechnical and Geoenvironmental Engineering 143 (3), 04016100 (2016). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
  • [15] X.S. Shi, J. Yin, Experimental and Theoretical Investigation on the Compression Behavior of Sand-Marine Clay Mixtures Within Homogenization Framework. Comput. Geotech 90 (Oct), 14-26 (2017). DOI: https://doi.org/10.1016/j.compgeo.2017.05.015.
  • [16] X.S. Shi, I. Herle, D. Muir Wood, A Consolidation Model for Lumpy Composite Soils in Open-Pit Mining. Géotechnique 68 (3), 189-204 (2018). DOI: https://doi.org/10.1680/jgeot.16.P.054.
  • [17] H.K. Dash, T.G. Sitharam, B.A. Baudet, Influence of Nonplastic Fines on the Response of a Silty Sand to Cyclic Loading. Soils and Foundations 50 (5), 695-704 (2010). DOI: https://doi.org/10.3208/sandf.50.695.
  • [18] L. Zuo, B.A. Baudet, Determination of the Transitional Fines Content of Sand-non-Plastic Fines Mixtures. Soils Found. 55 (1), 213-219 (2015). DOI: https://doi.org/10.1016/j.sandf.2014.12.017.
  • [19] C. Chu, Z. Wu, Y. Deng, Y. Chen, Q. Wang, Intrinsic Compression Behavior of Remolded Sand-Clay Mixture. Canadian Geotechnical Journal 54 (7), 926-932 (2017). DOI: https://doi.org/10.1139/cgj-2016-0453.
  • [20] Z. Wu, Y. Deng, Y. Cui, Y. Chen, Q. Wang, Q. Feng, Investigations on Secondary Compression Behaviours of Artificial Soft Sand-Clay Mixtures. Soils Found. 59 (2), 326-336 (2019). DOI: https://doi.org/10.1016/j.sandf.2018.11.008.
  • [21] W. Zhou, K. Xu, G. Ma, L. Yang, X. Chang, Effects of Particle Size Ratio on the Macro- and Microscopic Behaviors of Binary Mixtures at the Maximum Packing Efficiency State. Granular Matter 18 (4), 81 (2016). DOI: https://doi.org/10.1007/s10035-016-0678-1.
  • [22] X.S. Shi, J. Yin, Estimation of Hydraulic Conductivity of Saturated Sand-Marine Clay Mixtures with a Homogenization Approach. Int. J. Geomech. 18 (7), 04018082 (2018). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001190.
  • [23] X.S. Shi, J. Yin, J. Zhao, Elastic Visco-Plastic Model for Binary Sand-Clay Mixtures with Applications to One- Dimensional Finite Strain Consolidation Analysis. J. Eng. Mech. 145 (8), 04019059 (2019a). DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001623.
  • [24] X.S. Shi, J. Zhao, J. Yin, Z. Yu, An Elastoplastic Model for Gap-Graded Soils Based on Homogenization Theory. Int. J. Solids Struct. 163 (May), 1-14 (2019b). DOI: https://doi.org/10.1016/j.ijsolstr.2018.12.017.
  • [25] T.S. Nagaraj, F.J. Griffiths, R.C. Joshi, A. Vatsala, B.R.S. Murthy, Change in Pore-Size Distribution due to Consolidation of Clays Discussion. Géotechnique 40 (2), 303-309 (1990). DOI: http://eprints.iisc.ac.in/id/eprint/3525.
  • [26] M. Topolnicki (3-ed edition), In Situ Soil Mixing, In: K. Kirsch, A. Bell (Eds.), Ground Improvement, CRC Press, London (2013).
  • [27] FHWA-HRT-13-046, Federal Highway Administration Design Manual: Deep Mixing for Embankment and Foundation Support, U.S. Department of Transportation, Federal Highway Administration (2013).
  • [28] B.B. Broms, Deep Soil Stabilization: Design and Construction of Lime and Lime/Cement Columns. Royal Institute of Technology, Stockholm, Sweden (2003).
  • [29] Cement Deep Mixing (CDM), Design and Construction Manual for CDM Institute. Partial English Translation, Cement Deep Mixing Association of Japan, Tokyo, Japan, (1985).
  • [30] A.J. McGinn, T.D. O’Rourke, Performance of Deep Mixing Methods at Fort Point Channel. Federal Highway Administration, Washington, DC (2003).
  • [31] T. Kawasaki, A. Niina, S. Saitoh, R. Babasaki, Studies on Engineering Characteristics of Cement-Base Stabilized Soil. Takenaka Technical Research Report 19, 144-165 (1978).
  • [32] K. Uddin, A.S. Balasubramaniam, D.T. Bergado, Engineering Behavior of Cement-Treated Bangkok Soft Clay. Geotech. Eng. 28 (1), 89-119 (1997). DOI: http://worldcat.org/issn/00465828.
  • [33] N. Cristelo, S. Glendinning, L. Fernandes, A.T. Pinto, Effects of Alkaline- Activated Fly Ash and Portland Cement on Soft Soil Stabilization. Acta Geotechnica 8 (4), 395-405 (2013). DOI: https://doi.org/10.1007/s11440-012-0200-9.
  • [34] M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental Feasibility Study of Geopolymer as the Next- Generation Soil Stabilizer. Constr. Build. Mater. 47, 1468-1478 (2013). DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.017.
  • [35] S. Rios, N. Cristelo, T. Miranda, N. Arau, J. Oliveira, E. Lucas, Increasing the Reaction kinetics of Alkali-Activated Fly Ash Binders for Stabilization of a Silty Sand Pavement Sub-Base. Road Mater. Pavement Desing. 19 (1), 201- 222 (2016). DOI: https://doi.org/10.1080/14680629.2016.1251959.
  • [36] H.H. Abdullah, M.A. Shahin, P. Sarker, Stabilisation of Clay with Fly-Ash Geopolymer Incorporating GGBFS. In: Proceedings of the second Proceedings of the Second World Congress on Civil, Structural and Environmental Engineering (CSEE’17), 1-8 (2017).
  • [37] A.B. Moghal, State of the Art Review on the Role of Fly Ashes in Geotechnical and Geo Environmental Applications. J. Mater. Civ. Eng. 29 (8), 04017072 (2017). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001897.
  • [38] S. Pourakbar, A. Asadi, B.B. Huat, N. Cristelo, M.H. Fasihnikoutalab, Application of Alkali-Activated Agro-Waste Reinforced with Wollastonite Fibers in Soil Stabilization. J. Mater. Civ. Eng. 29 (2), 04016206 (2016). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001735.
  • [39] Elkhebu, A. Zainorabidin, I. Bakar, B.K. Huat, L. Abdeldjouad, W. Dheyab, Alkaline Activation of Clayey Soil Using Potassium Hydroxide and Fly Ash. International Journal of Integrated Engineering 10 (9), 99-104 (2019). DOI: https://doi.org/10.30880/ijie.2018.10.09.016.
  • [40] L . Abdeldjouad, A. Asadi, R.J. Ball, H. Nahazanan, B.K. Huat, W. Dheyab, A. Elkhebu, Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering 5, (2019b). DOI: https://doi.org/10.1007/s40891-019-0157-y.
  • [41] L. Abdeldjouad, A. Asadi, R.J. Ball, H. Nahazanan, B.K. Huat, Application of Alkali-Activated Palm Oil Fuel Ash Reinforced with Glass Fibers in Soil Stabilization. Soils and Foundations 59 (5), 1552-1561 (2019c). DOI: https://doi.org/10.1016/j.sandf.2019.07.008.
  • [42] B.R. Phanikumar, E. Ramanjaneya, Compaction and Strength Characteristics of An Expansive Clay Stabilized with Lime Sludge and Cement. Soils and Foundations 60, 129-138 (2020). DOI: https://doi.org/10.1016/j.sandf.2020.01.007.
  • [43] D.N. Little, E.H. Males, J.R. Prusinski, B. Stewart Cementitious Stabilization, A Research Report, A2J01, Committee on Cementitious stabilization. Louisiana State University (2016).
  • [44] Z.D. Zhu, S.Y. Liu, Utilisation of a New Soil Stabilizer for Silt Subgrade. Eng. Geol. 97 (3-4), 192-198 (2008). DOI: https://doi.org/10.1016/j.enggeo.2008.01.003.
  • [45] X.B. Yu, B. Zhang, D. Cartweight, Beneficial Utilization of Lime Sludge for Subgrade Stabilization: A pilot investigation. Ohio Department of Transportation, Office of Research and Development (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-881f3286-8f9e-49ed-99d8-066aa4389769
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.