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DO PRIMARY EVENT UNCERTAINTY DISTRIBUTIONS IMPACT TOP EVENT 

DISTRIBUTION? 

 

Abstract. The risk analysis is an  essential element of  planning, production and operation of technical 

equipment. This paper deals with the fault tree. The fault tree analysis belongs to the most commonly 

used risk assessment methods. The main aim of the paper is to ask for the question: does the top event 

uncertainty assessment have a relationship with adopted assumption of primary events distribution? 

To achieve this aim a computer simulation that involve random numbers, commonly known as the 

Monte Carlo method, was used. The research makes use of  the Beta, Lognormal, Johnson SJ and 

truncated Normal distribution.   
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  1. INTRODUCTION 

Fault trees are of vital importance for complex systems reliability assessment. They are useful 

for  planning a variety of projects and operations at risk. Figure 1 shows an example of the 

fault tree created by Patrick O’Connor [3]. What is the structure of the fault tree? The tree 

comprises two kinds of events: primary and intermediate and consists of “AND” or “OR” 

gates. The top event is connected with intermediate and primary events by means of branches. 

Probability of the top event is uncertain since particular probabilities of primary events are 

uncertain as well. In particular, this paper deals with uncertainty of assessment of top event 

probability.  The main aim is to answer the following  question:  do primary event uncertainty 

distributions impact the top event distributions in the fault tree? To answer the question four 

cases for primary event distributions have been employed: the Beta, Lognormal, Johnson SJ  

and truncated Normal distribution. 

 

2. CALCULATION ENVIRONMENT 

To achieve research aims computer simulation that involve random numbers, commonly 

known as the Monte Carlo method, was used. Monte Carlo method has been implemented 

using the Mathcad software package. Mathcad is as versatile and powerful as programming 

language, yet it is as easy to use as a spreadsheet. This mathematical environment turns out to 

be an ideal programming and calculation workspace for solving even the complicated 

problems of  reliability engineering. In this paper we present the most important procedures 

only. 

 

3. THE FUNCTION OF THE FAULT TREE RELIABILITY 



The „OR” and „AND” gates correspond to specified events and logical operations. In the 

„OR” gate the output event is takes place if any of the input events take place. From the point 

of view of the reliability this situation corresponds to the model of series structure [4].  

Let n be the number of inputs in the gate and pi , i=1,2,…,n are fault probabilities. 

The reliability structure function for this case is 
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In the „AND” gate the output event occurs on condition that all of the input events take place. 

It corresponds to the model of parallel structure [4]. Appropriately for this case the structure 

function is 
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Figure 1 exemplified the tree of  P.  O’Connor. The reliability function of  this tree is as  

follows 
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The Mathcad procedure used to calculate values of the reliability function according to (2.3) 

is presented below 

 

 

 

 

This procedure is easily readable and does not require any additional descriptions or 

comments. 
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Fig. 1 The fault tree according to O’Connor 

 

 

4. UNCERTAINTY AND RANDOMNES 

In this paper probabilities of primary events (PEPs) are considered random variables not  

determined constant. It is because PEPs are results of statistical inference and arbitrary 

engineering assessments procedures. Let n be a number of primary events. A set of input data 

comprises paired values. The first member of each pair is the most probable PEP value (i.e. 

pPEP), the second one is PEP’s uncertainty coefficient (PEPu).   

PEPu is defined as follows (by Apostolakis [1]) 

                                                          (3.1) 

where x0.95 is such a value of x, called 95% quantile, which satisfies the equation 

F(x0.95)=0.95 and  xm = pPEP is a maximum of density function called the mode. The mode is 

mx

x
PEPu 95.0



understood as the most probable value the r.v. may take. In most cases, just pPEP and PEPu 

comprise input data.  

Underneath denoted symbols were used in [2] for the first time:                      

PEPs - PRIMARY EVENT  PROBABILITIES,   

pPEP - the highest probability of  PRIMARY EVENT PROBABILITIES, 

PEPu  - PRIMARY EVENT  PROBABILITIES uncertainty coefficient.  

 

 

 

 

5. INPUT DATA 

Table 1 contains all the input data related to primary event tree of Fig. 1. There are preferred 

values of primary events probabilities and uncertainty coefficients i.e. pPEP values and PEPu 

values. 

 

 

 

 

 

 

 

 

 

 
 

Tab. 1 Input data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary  pPEP PEPu 

event     

1 0,01 3 

2 0,02 5 

3 0,02 5 

4 0,02 5 

5 0,05 2 

6 0,05 2 

7 0,05 2 

8 0,05 2 
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Fig. 2 Density function of the primary event number 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Density function of the primary event number 8 

 

 

All the distributions have the same pPEP and PEPu values but they are diversified in respect 

of  the density function shape. The skewness and the kurtosis are different in this case. 

  

 

 

6. THE SCHEME OF MONTE CARLO SIMULATION 

The simulation method was applied in four steps.  

 

Step 1: Calculating a, b parameters values for primary events distribution. 

Step 2: Generating xij input random numbers, i=1,2,…,10 000, j=1,2…,8. 

Step 3: Calculating reliability function values (resulting vector comprises 10 000 values). 

Step 4: Calculating values pPEP, PEPu and x95 quantile for output distribution. 

 

Every calculation was done for four different distributions: beta, lognormal, Johnson and 

truncated normal. 

 

7. THE BETA DISTRIBUTION EMPLOYED 

The first of two major characteristics of probability distribution is the probability density 

function denoted f(x). In the case of beta distribution we have 
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where x denotes  the random variable;  a, b are beta distribution parameters (a>0, b>0) and 

B(a,b) is the beta function. 

By the definition 
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For a>1 and b>1 the probability density function has a mode 
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The second characteristics is the cumulative probability function defined as follows 
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In particular: 
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The parameters a and b values we obtain after having solved system of equation (7.3) and 

(7.5) for values xm (pPEP) and x0,95  .95,0 PEPupPEPx   

The next step is the generation of random variables data and now we can calculate reliability 

structure function values (Proc_03).  

The final calculation step is to find  the values of pPEP, x0,95 and PEPu for output  

distribution.  To achieve this aim the following  Mathcad procedure is applied.  Particular 

rows of the procedure are commented in detail. Numbers in brackets are intended as reference 

numbers. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The description of  Proc_11procedure  
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[1] - Ascribing the number of fX vector rows to nn variable. 

[2] - Sorting the rows of fX vector in ascending order. 

[3],[4] - Defining of the initial mode interval; ascribe values to xd and xg. 

[5] - Ascribing the values to variable. 

[6] - Ascribing the values to xs variable. 

[7] - Initialization of m variable and ascribing zero to m. 

[8] - Started the while loop. 

[9], [10] - Ascribing the density function values for xd and xg arguments to fd and fg variable, 

respectively. The Parzen’s method (Proc_10a) was employed to estimate the density function 

of the top event distribution. 

[11],[12] - Definition of the new limits of the mode interval; conditional ascribing the values 

to xd and xg variable. 

[13] - Ascribing the value to xs variable. 

[14] - Incrementing the m value. 

[15], [16], [17], [18] - Ascribing the values to columns of  TWP matrix. 

[19] - The exit condition of the while loop.  

[20] – Projection the vector of results.    

 

We obtain the following result in the beta case 

 

pPEP 0,128 

x0,95 0,228 

PEPu 1,776 

 

 

8. THE LOGNORMAL DISTRIBUTION EMPLOYED 

The lognormal distribution was derived from the well-known normal distribution. It is said 

that a given random variable follows the lognormal distribution if its natural logarithm 

follows the normal distribution. 

In the case of lognormal distribution we have         
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where  denotes  the random variable  and  denote parameters. 

The probability density function has a mode located at 
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 The cumulative failure function takes the form 
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If  follows the lognormal distribution then random variable 

                                                           (8.4) 

follows the normal N(0,1) distribution. It can be easily read-out from tables of the N(0,1) 

distribution that corresponding  quantile is equal to 1.64. Consequently, we get 

 

        .                            (8.5) 

.                                                             

Substituting (2b) and (5) into (6) we get 

.                                                (8.7) 

After transformation of formulas (2b) and (7) we obtain the following equations for a and b 

parameters 
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The Mathcad procedure named Proc_11 returns the following result vector: 

 

pPEP 0,101923 

x0,95 0,159174 

PEPu 1,561699 

 

9. THE JOHNSON DISTRIBUTION EMPLOYED 

The Johnson distribution of SB type has the following probability density function 
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where x denote r.v. and a, b are parameters.  

The cumulative distribution function 
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If  x follows the Johnson distribution the random variable 
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follows the normal N(0,1) distribution.  

In particular 
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Consequently 
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For  x0,95  
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Taking (9.5) and (9.6) into consideration we obtain the distribution parameters a and b. 

The Mathcad procedure named Proc_11 returns the following result vector. 

 

pPEP 0,096 

x0,95 0,151 

PEPu 1,581 

  

The Beta, Lognormal and Johnson SJ distributions are a skewed to the right. The right tail is 

longer than the left side and the bulk of the values lie to the left on the mean. The truncated 

normal distribution is right-skewed as well; nonetheless the  skewness is not such great in this 

case. This distribution presents more optimistic situation from the reliability point of view. 

 

10. THE TRUNCATED NORMAL DISTRIBUTION 

The probability density function of  the truncated normal distribution takes the following form 
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where f(x) is probability density function of normal distribution 
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is constant. 

The cumulative probability function  
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Left side cut-off normal distribution  (10.1 ) and normal distribution (10.2 ) have the same 

values of xm and x0,95. 

The appropriately Mathcad procedure gives the following result. 

 

pPEP 0,148 

x0,95 0,249 

PEPu 1,679 

 

 

11. CONCLUSION  

Since Apostolakis [1] has originated uncertainty analysis the lognormal and Johnson SB 

distributions have gained popularity as basic uncertainty distributions. Moreover, one may 

treat the lognormal distribution as a special case of  the Johnson SB distribution when 1x .  

In ranges of x  we deal with in uncertainty assessment these distribution are very similar. 

In Reality nothing follows the lognormal, Johnson or any other distribution known in 

probability theory. The distributions are only mathematical models of Reality made for 

engineering purposes. This is so called “engineering judgment”.  

It may happen, despite this common believe, that actual uncertainty distribution of primary 

events will considerably differ from the Lognormal and Johnson distributions. If so, a 

question is sure to be asked: In what degree does this fact impact uncertainty distribution of 

the top event?  

Table 2 is intended to compare output distributions in terms of pPEP and PEPu. 

  

 TYPE OF DISTRIBUTION 

BETA LOG-NORMAL JOHNSON  TRUNCATED 

NORMAL 

 pPEP 0,128 0,102 0,096 0,148 

PEPu 1,776 1,562 1,581 1,679 

           Tab. 2  Mode (pPEP) and uncertainty coefficient (PEPu) of output distributions 

 

Taking into account that simulations comprised 10000 repetitions one may conclude that 

mode and uncertainty coefficient of the top event distribution does not depend on the primary 

event distributions.  



In other words: there is no significant relation between assumptions relating to primary events 

distribution and uncertainty assessment of output distribution. 
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