PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikrozanieczyszczenia w środowisku – występowanie, interakcje, usuwanie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Micropollutants in the Environment: Occurrence, Interactions and Elimination
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono szeroki zakres zagadnień dotyczących mikrozanieczyszczeń w środowisku naturalnym i antropogenicznym. Do omówionych zagadnień należą: źródła i występowanie mikrozanieczyszczeń w środowisku (w wodzie, glebie i powietrzu), ich los w środowisku, ekotoksyczność, sposoby ograniczania powstawania mikrozanieczyszczeń, szlaki przemian i produkty transformacji w środowisku, problematyka oczyszczania ścieków zawierających mikrozanieczyszczenia, prace badawcze dotyczące omawianej problematyki i przegląd wybranych rozwiązań w skali technicznej. Usuwanie mikrozanieczyszczeń stanowi aktualnie wiodący problem inżynierii środowiska. Wiedza o występowaniu tych zanieczyszczeń w środowisku jest już dość bogata, rozpoznano też częściowo jakie są ich losy w obiektach gospodarki wodnej i odpadami, także znaczny postęp nastąpił w zakresie znajomości efektywności technologii możliwych do zastosowania dla ich eliminacji ze środowiska. Rozwój technologii oczyszczania ścieków, a w mniejszym stopniu gospodarki odpadami, doprowadził już do usunięcia lub zmniejszenia zagrożenia spowodowanego znacznymi ilościami zanieczyszczeń, jednak aktualnie najbardziej palącym zagadnieniem jest występowanie mikrozanieczyszczeń, których działanie na środowisko przyrodnicze i człowieka nie można jeszcze oszacować. Ze względu na fakt, że występujące w środowisku mikrozanieczyszczenia antropogeniczne są bardzo zróżnicowane pod względem struktury chemicznej, a co się z tym wiąże – charakteryzują się innymi właściwościami fizyko-chemicznymi i w inny sposób działają na organizmy żywe obecne w środowisku, nie można wyróżnić jednego szlaku transformacji tych zanieczyszczeń. Mikrozanieczyszczenia antropogeniczne najczęściej nie są całkowicie rozkładane biologicznie, a ich transformacja związana jest ze zjawiskiem kometabolizmu oraz współdziałaniu określonych konsorcjów mikroorganizmów. Poszukiwaniu nowych, bardziej skutecznych, metod usuwania mikrozanieczyszczeń z środowiska powinna zawsze towarzyszyć ewaluacja toksyczności powstałych produktów. Produkty transformacji niektórych zanieczyszczeń były bardziej toksyczne w stosunku do organizmów wskaźnikowych niż substancje macierzyste. Głównym źródłem mikrozanieczyszczeń przedostających się do środowiska wodnego w krajach rozwiniętych (w przypadku terenów skanalizowanych) są komunalne oczyszczalnie ścieków. Z tego względu w artykule szczegółowo omówiono problematykę usuwania mikrozanieczyszczeń ze ścieków komunalnych w układach oczyszczania i doczyszczania ścieków. W artykule przedstawiono wyniki dotyczące usuwania wybranych mikrozanieczyszczeń (benzotriazol, mekoprop, diklofenak, sulfametoksazol i karbamazpina) w 11 rodzajach układów oczyszczania ścieków opartych zarówno na procesach biologicznych (oczyszczalnie hydrofitowe, stawy stabilizacyjne i układy z osadem czynnym), jak i fizyko-chemicznych (koagulacja, sorpcja na węglu aktywnym, zaawansowane procesy utleniania, fotoliza i ozonoliza) oraz różniących się zapotrzebowaniem powierzchni (co wynika z jednostkowej szybkości procesu) i konsumpcją energii (te dwa czynniki uznano za podstawę podziału na procesy intensywne i ekstensywne). Przedstawione w artykule zagadnienia stanowią podstawę do kreowania projektów badawczych, pozwalających przybliżyć moment w którym oczyszczalnie ścieków posiadać będą (czwarty) stopień, który zapewni likwidację zagrożeń wynikających z obecności w oczyszczonych ściekach substancji priorytetowych nawet w bardzo niskim stężeniu (co powodować może odległe w czasie skutki).
EN
The article presents a broad range of issues concerning micropollutants in the natural and anthropogenic environment. The issues discussed are: the source and occurrence of micropollutants in the environment (water, soil and air), their environmental fate, ecotoxicity, measures to reduce the produced amount of micropollutants, transformation pathways and transformation products in the environment, treatment of wastewater containg micropollutants, research projects dedicated to the discussed issues and a review of selected solutions on an industrial scale. Removal of micropollutants is currently a pressing problem of environmental engineering. Knowledge of the presence of these pollutants in the environment is already quite advanced, with partial understandingof their fate in waste and wastewater treatment processes. Also, significant progress has been made in the understanding of the applicability of various treatment methods and their effectiveness in the removal of micropollutants from waste streams. Development of wastewater treatment technology, and to a lesser extent, waste management, has already led to elimination or reduction of the risk posed by the significant amounts of pollution, but currently the most pressing issue is the presence of micropollutants whose effect on natural environment and humanrequires further studies. There is no single transformation pathway of micropollutants, due to the fact that they are diverse in terms of chemical structure, subsequently have various physico-chemical properties, and affect the organisms present in the environment in various manner. Anthropogenic micropollutants usually are not completely degraded biologically, and their transformation is associated with the phenomenon of co-metabolism and cooperation of certain consortia of microorganisms. The search for new, more effective, methods for removing micropollutants from the environment should always be accompanied by evaluation of the toxicity of the resulting products. Transformation products of certain micropollutants were more toxic to indicator organisms than the parent compounds. The main source of micropollutants entering the water environment in developed countries (in the case of sewered areas) are municipal wastewater treatment plants. For this reason, the article discussed in detail the issue of the removal of micropollutants from municipal wastewaterin the secondary and tertiary (post-treatment)treatment steps. The article presents the results for the abatement of selected micropollutants (benzotriazole, mecoprop, diclofenac, sulfamethoxazole and karbamazpina) in 11 types of wastewater treatment based on both biological processes (constructed wetlands, stabilization ponds and activated sludge systems) and physicochemical methods (coagulation, sorption on activated carbon, advanced oxidation, photolysis and ozonolysis), and the area requirements (due to the process rate) and the energy consumption (the two factors are the basis for the distinction between the intensive and extensive technologies). The issues presented in the article the basis for new research projects, allowing accelerating the moment in which the waste water treatment plants, will have a quaternary treatment step, which will significantly reduce of the risks of the presence of priority substances in the treated wastewatereven at very low concentrations (which may cause long-time effects).
Rocznik
Strony
1--84
Opis fizyczny
Bibliogr. 209 poz., tab., rys.
Twórcy
autor
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice, Polska
  • Centrum Biotechnologii, Politechnika Śląska, Gliwice, Polska
autor
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice, Polska
  • Centrum Biotechnologii, Politechnika Śląska, Gliwice, Polska
autor
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice, Polska
  • Centrum Biotechnologii, Politechnika Śląska, Gliwice, Polska
autor
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice, Polska
  • Centrum Biotechnologii, Politechnika Śląska, Gliwice, Polska
  • Czech University of Life Sciences Prague, Czech Republic
autor
  • Katedra Biotechnologii Środowiskowej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice, Polska
  • Centrum Biotechnologii, Politechnika Śląska, Gliwice, Polska
Bibliografia
  • ADEQUAD (2007). Auswirkungen der Erweiterung der HKA und des Kanalnetzes von Wien auf die betroffenen Gewässer Donau, Donaukanal und Liesing. Institut für Wassergüte und Abfallwirtschaft der TU Wien. EU INTERREG III-A Projekt Nr.866/2005. November 2007.
  • Altmann, J., Zietzschmann, F., Geiling, E.L., Ruhl, A.S., Sperlich, A., & Jekel, M. (2015). Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater. Chemosphere, 125, 198-204.
  • Angeletti, G., & Bjorseth, A. (red.) (1991). Organic Micropollutants in the Aquatic Environment. Dordrecht, Holandia: Kluwer Academic Publishers.
  • Arnold, K.E., Ross Brown A., Ankley, G.T., & Sumpter, J.P. (2014). Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems. Philosophical Transactions of the Royal Society B, 369 (1656).
  • Asipita, S.A., Ismail, M., Majid, M.Z.A., Majid, Z.A., Abdullah, C., & Mirza, J. (2014). Green Bambusa arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete. Journal of Cleaner Production, 67, 139-146.
  • Audsley, N., & Down, R.E. (2015). G protein coupled receptors as targets for next generation pesticides. Insect biochemistry and molecular biology, 67, 27-37.
  • Ávila, C., Nivala, J., Olsson, L., Kassa, K., Headley, T., Mueller, R.A., Bayona, J.P., & García, J. (2014). Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Science of the Total Environment, 494, 211-217.
  • Ávila, C., Pedescoll, A., Matamoros, V., Bayona, J.M., & García, J. (2010). Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment. Chemosphere, 81, 1137-42.
  • Ávila, C., Reyes, C., Bayona, J.M., & García, J. (2013). Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water Research, 47, 31-325.
  • Baeza, C., & Knappe, D.R. (2011). Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes. Water Research, 45(15), 4531-4543.
  • Banzhaf, S., Nödler, K., Licha, T., Krein, A.,& Scheytt, T. (2012). Redoxsensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Science of the Total Environment, 438, 113-121.
  • Bartha, B., Huber, C., & Schröder, P. (2014). Uptake and metabolism of diclofenac in Typha latifolia – How plants cope with human pharmaceutical pollution. Plant Science, 227, 12-20.
  • Beltran, F.J. (red.), 2004. Ozone Reaction Kinetics for Water and Wastewater Systems. Boca Raton, USA: CRC Press.
  • Bendz, D., Paxéus, N.A., Ginn, T.R.,& Loge, F.J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Journal of Hazardous Materials, 122, 195-204.
  • Benitez, F.J., Acero, J.L., Real, F.J., Roldan, G., & Rodriguez, E. (2013) Photolysis of model emerging contaminants in ultra-pure water: kinetics, byproducts formation and degradation pathways. Water Research, 47(2), 870-880.
  • Bernhard, M., Müller, J., & Knepper, T.P. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane reactor and actived sludge treatment. Water Research, 40, 3419-3428.
  • Biziuk, M. (red) (2001). Pestycydy występowanie oznaczanie i unieszkodliwianie. Warszawa, Polska: Wydawnictwa Naukowo-Techniczne.
  • Blomqvist, A., Berg, C., Holm, L., Brandt, I., Ridderstråle, Y., & Brunström, B. (2006). Defective reproductive organ morphology and function in domestic rooster embryonically exposed to o,p′-DDT or Ethynylestradiol. Biology of Reproduction, 74, 481-486.
  • Bolong, N., Ismail, A.F., Salim, M.R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239(1), 229-246.
  • Bonvin, F., Jost, L., Randin, L., Bonvin, E., & Kohn, T. (2016). Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Research, 90, 90-99.
  • Boog, J., Nivala, J., Aubron, T., Wallace, S., van Afferden, M., & Müller, R.A. (2014). Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland. Bioresource Technology, 162, 166-174.
  • Borowska, E., Felis, E., & Miksch, K. (2015). Degradation of Sulfamethoxazole Using UV and UV/H2O2 Processes. Journal of Advanced Oxidation Technologies, 18(1), 69-77.
  • Borowska, E., Felis, E., & Smaga, K. (2013). Metody detekcji benzotiazoli i benzotriazoli w różnych matrycach środowiskowych [W:] Węgrzyn A. (red.), Podstawy biotechnologii środowiskowej - trendy, badania, implementacje, Gliwice: Wyd. Politechnika Śląska, 67-85.
  • Bouju, H., Nastold, P., Beck, B., Hollender, J., Corvini, P.F.X., & Wintgens, T. (2016). Elucidation of biotransformation of diclofenac and 4′ hydroxydiclofenac during biological wastewater treatment. Journal of Hazardous Materials, 301, 443-452.
  • Boxall, A.B., Rudd, M.A., Brooks, B.W., Caldwell, D.J., Choi, K., i in. (2012). Pharmaceuticals and personal care products in the environment: what are the big questions?Environmental Health Perspectives, 120(9), 1221.
  • Boxall, A.B.A., Fogg, L., Blackwell, P.A., Kay, P., & Pemberton, E.J. (2002). Review of veterinary medicines in the environment. Bristol, Wielka Brytania: Environment Agency
  • Breitholtz, M., Näslund, M., Stråe, D., Borg, H., Grabic, R., & Fick, J. (2012). An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants. Ecotoxicol Environ Saf, 78, 63-71.
  • Bringolf, R.B., Heltsley, R.M., Newton, T.J., Eads, Ch.B., Fraley, S.J., Shea, D., & Cope, W.G. (2010). Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. Environmental Toxicology and Chemistry, 6, 1311-1318.
  • Brix, H., & Arias, C.A. (2005). The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecological engineering, 25(5), 491-500.
  • Cahill, J.D., Furlong, E.T., Burkhardt, M.R., Kolpin D., & Anderson, L.G.J. (2004). Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 1041, 171-80.
  • Carballa, M., Omil, F., & Lema, J.M. (2005). Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Research, 39, 4790-4796.
  • Carballa, M., Omil, F., Lema, J.M., Llompart, M., Garcı́a-Jares, C., Rodrı́guez, I., Gómez, M.,& Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918-2926.
  • Carballa, M., Omil, F., Ternes, T., & Lema, J.M. (2007). Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 41, 2139-2150.
  • Careghini, A., Mastorgio, A.F., Saponaro, S.,& Sezenna, E. (2015). Bisphenol A, nonylphenols, benozphenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711-5741.
  • Carranza-Diaz, O., Schultze-Nobre, L., Moeder, M., Nivala, J., Kuschk, P., & Koeser, H. (2014). Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecological Engineering, 71, 234-245.
  • Carter, L.J., Harris, E., Williams, M., Ryan, J.J., Kookana, R.S., & Boxall, A.B.A. (2014). Fate and Uptake Pharmaceuticals in Soil-Plant System. Journal of Agricultural and Food Chemistry, 62, 816-825.
  • Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., & Zuccato, E. (2005) A multiresidue analytical method using solid-phase extraction and highpressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. Journal of Chromatography A, 1092, 206-15.
  • Chauzat, M.P., Faucon, J.P., Martel, A.C., Lachaize, J., Cougoule, N., & Aubert, M. (2006). A survey of pesticide residues in pollen loads collected by honey bees in France. Journal of Economic Entomology, 99, 253-62.
  • Chen, M.-Y., Ike, M., & Fujita, M., (2002). Acute toxicity, mutagenicity, and estrogenicity of Bisphenil-A and other bisphenols. Environmental Toxicology, 17, 80-88.
  • Choi, K., Kim, Y., Park, J., Park, C.K., Kim, M., Kim, H.S., & Kim, P. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 405(1), 120-128.
  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39, 4797-4807.
  • Colosio C, Rubino F., Alegakis A., Ariano E., Brambilla G., Mandic-RajcevicS., Metruccio F., Minola C., Moretto A., Somaruga C., Tsatsakis A., TurciR., & Vellere, F. (2011). Integration of biological monitoring, environmentalmonitoring and computational modeling into the interpretation of pesticideexposure data: Introduction to a proposed approach. Toxicology Letters, 213, 45-46.
  • Conkle, J.L., White, J.R., & Metcalfe, C.D. (2008). Reduction of pharmaceutic allyactive compounds by a lagoon wetland wastewater treatment systemin Southeast Louisiana. Chemosphere, 73, 1741-1748.
  • Daughton, C.G., & Ternes, T.A. (1999). Pharmaceuticals and personal careproducts in the environment: agents of subtle change. Environmental Health Perspectives, 107, 907-938.
  • Daughton, Ch.G.,& Ruhoy, I.S. (2013). Lower-dose prescribing: Minimizing“side effects” of pharmaceuticals on society and the environment. Science of the Total Environment, 443, 324-337.
  • de la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L.F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46, 1947-1957.
  • Decyzja NR 2455/2001/WE parlamentu europejskiego i rady z dnia 20 listopada 2001 r. ustanawiająca wykaz priorytetowych substancji w dziedzinie polityki wodnej oraz zmieniająca dyrektywę 2000/60/WE.
  • Dordio, A., Carvalho, A.J.P., Teixeira, D.M., Dias, C.B., & Pinto, A.P. (2010). Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresource Technology, 101, 886-92.
  • Dordio, A., Ferro, R., Teixeira, D., Palace, A.J., Pinto, A.P., & Dias, C.M.(2011). Study on the use of Typha spp. for the phytotreatment of water contaminated with ibuprofen. International Journal of Environmental and Analytical Chemistry, 91(7-8), 654-667.
  • Dudziak, M., & Bodzek, M. (2009). Badania zawartości ksenoestrogenów w wodzie metodą ekstrakcji sorpcyjnej. Ochrona Środowiska, 31, 9-14.
  • Dutta, S. (2015). Biopesticides: an ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceuticals Science, 4, 250-265.
  • Dyrektywa Parlamentu Europejskiego i Rady 2013/39/UE z dnia 12 sierpnia 2013 r. zmieniająca dyrektywy 2000/60/WE i 2008/105/WE w zakresie substancji priorytetowych w dziedzinie polityki wodnej.
  • Eggen, R.I., Hollender, J., Joss, A., Schärer, M., & Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environmental Science & Technology, 48(14), 7683-7689.
  • Enault, J., Robert, S., Schlosser, O., De Thé, C., & Loret, J.-F. (2015). Drinking water, diet, indoor air: Comparison of the contribution to environmental micropollutants exposure. Internal Journal of Hygiene and Environmental Health, 218, 723-730.
  • Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodríguez, M. (2002): Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36, 1034-1042.
  • Esteban, S., Gorga, M., Petrovic, M., González-Alonso, S., Barceló, D., & Valcárcel, Y. (2014). Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Science of the Total Environment, 466-467, 939-951.
  • Fatta-Kassinos, D., Dionysios, D.D., & Kümmerer, K. (red.) (2016). Advanced Treatment Technologies for Urban Wastewater Reuse. Szwajcaria: Springer.
  • Felis, E., Borok, S., & Miksch, K. (2011). Ocena zdolności wybranych biomimetyków hormonalnych do sorpcji na kłaczkach osadu czynnego. Ochrona Środowiska, 33, 49-52.
  • Felis, E., Wiszniowski, J., & Miksch, K. (2009). Advanced oxidation of diclofenac in various aquatic environments. Archives of Environmental Protection, 35, 15-25.
  • Ferrari, B., Paxeus, N., Giudice, R.L., Pollio, A., & Garric, J. (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters, study of carbamazepine, clofbric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55, 359-370.
  • Ferro, G., Guarino, F., Castiglione, S., & Rizzo, L. (2016). Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Science of the Total Environment, 560-561, 29-35.
  • Fonder, N, & Headley, T. (2013). The taxonomy of treatment wetlands: A proposed classification and nomenclature system. Ecological Engineering, 51, 203-211.
  • Frazier, M.T., Mullin, C., & Frazier, J.(2008). What have pesticides got to do with it? American Bee Journal, 148, 521-523.
  • Fuchs, G., Boll, M., & Heider, J. (2011). Microbial degradation of aromatic compounds – from one strategy to four. Nature Reviews Microbiology, 9, 803-816.
  • Gervais, J.A., Luukinen, B., Buhl, K., & Stone, D. (2010). Imidacloprid Technical Fact Sheet. National Pesticide Information Center, Oregon State University Extension Services.
  • Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., Marrone, P., Morin, L., & Stewart, A. (2012). Have biopesticides come of age? Trends in Biotechnology, 30, 250-258.
  • Grabińska-Sota, E., Wiśniowska, E., & Kalka, J. (2003). Toxicity of selected synthetic auxines – 2,4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Protection, 22, 355-360.
  • Greń, I., Guzik, U., Wojcieszyńska, D., & Łabużek, S. (2008). Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych. Biotechnologia, 2(81), 58-67.
  • Haap, T., Triebskorn, R., & Köhler, H-R. (2008). Acute effects of diclofenac and DMSO to Daphnia magna: Immobilisation and hsp70-induction. Chemosphere, 73, 353-359.
  • Halling-Sorensen, B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., Lutzoft, H.H.C., & Jorgensen, S.E. (1998).Occurrence, Fate and Effects of Pharamaceutical Substances in the Enivironment – A Review. Chemosphere, 36, 35-393.
  • Haroune, N., Combourieu, B., Besse, P., Sancelme, M., Reemtsma, T., Kloepfer, A., Diab, A., Knapp, J.S., Baumberg, S., & Delort, A.M. (2002). Benzothiazole degradation by Rhodococcus pyridinovorans strain PA: evidence of a catechol 1,2-dioxygenase activity. Applied and Environmental Microbiology, 68(12), 6114-6120.
  • Heberer, T. (2002a). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5-17.
  • Heberer, T. (2002b). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175-189.
  • Hijosa-Valsero, M., Fink, G., Schlüsener, M.P., Sidrach-Cardona, R., Martín-Villacorta, J., Ternes, T., & Bécares, E. (2011a). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 83, 713-719.
  • Hijosa-Valsero, M., Matamoros, V., Martín-Villacorta, J., Bécares, E., & Bayona, J.M. (2010a). Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Research, 44, 1429-1439
  • Hijosa-Valsero, M., Matamoros, V., Pedescoll, A., Martín-Villacorta, J., Bécares, E., García, J., & Bayona, J.M. (2011b). Evaluation of primary treatment and loading regimes in the removal of pharmaceuticals and personal care products from urban wastewaters by subsurface-flow constructed wetlands. International Journal of Environmental and Analytical Chemistry, 91, 632-653.
  • Hijosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martín-Villacorta, J., Bécares, E., & Bayona, J.M., (2010b). Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Research, 44, 3669-3678.
  • Hijosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Pedescoll, A., Martín-Villacorta, J., García, J., Bayona, J.M., & Bécares, E. (2011c). Influence of design, physico-chemical and environmental parameters on pharmaceuticals and fragrances removal by constructed wetlands. Water Science and Technology, 63, 2527-34.
  • Hillis, D., Antunes, P., Sibley, P., Klironomos, J., & Solomon, K. (2008). Structural responses of Daucus carota root-organ cultures and the arbuscular mycorrhizal fungus, Glomus intraradices, to 12 pharmaceuticals. Chemosphere, 73, 344-352.
  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225, 109-118.
  • Ho, Y.B., Zakaria, M.P., Latif, P.A., & Saari, N. (2012). Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1262, 160-168.
  • Hollender, J., Escher, B., (2009). Eliminating micropollutants: efficiency assessment. Eawag News, 67e, 28-30.
  • Huber, M.M., Canonica, S., Park, G.Y., & Von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 37(5), 1016-1024.
  • Hughes, S.R., Kay, P., & Brown, L.E. (2013). Global Synthesis and Critical Evaluation of Pharmaceutical Data Sets Collected from River System. Environmental Science & Technology, 47, 661-677.
  • Huntscha, S., Hofstetter, T.B., Schymanski, E.L., Spahr, S., & Hollender, J. (2014). Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environmental Science & Technology, 48(8), 4435-4443.
  • Ike, M., Chen, M.-Y., Jin, Ch.-S., & Fujita, M., (2002). Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of Bisphenol-A. Environmental Toxicology, 17(5), 457-461.
  • Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L., Parrella A. (2005). Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Science of the Total Environment, 346, 87-98.
  • Jelić, A., Rodriguez-Mozaz, S., Barceló, D., & Gutierrez, O. (2015). Impact ofin-sewer transformation on 43 pharmaceuticals in a pressurized sewer underanaerobic conditions. Water Research, 68, 98-108.
  • Kalka, J., Felis, E., Kowalska, K., Nowrotek, M., & Surmacz-Górska, J. (2015a). Biological treatment and ecotoxicity of wastewater containing corrosion inhibitors. SETAC Europe 25th Annual Meeting Barcelona, Hiszpania, 3-7.05.2015
  • Kalka, J., Marciocha, D., Turek-Szytow, J., & Surmacz-Górska, J. (2011) Investigations on biodegradability and toxicity of selected veterinary antiparasitic drugs. 15th International Symposium on Toxicity Assessment ISTA 15, Hong Kong. 3-8.06.2011.
  • Kalka, J., Marciocha, D., Turek-Szytow, J., & Surmacz-Górska, J. (2013) Ocena zagrożenia środowiska glebowego ze strony wybranych farmaceutyków weterynaryjnych. Sprawozdanie mertytoryczne z projektu badawczego N523 561238, Gliwice.
  • Kalka, J., Miksch, K., Grabińska-Sota, E., & Zbróg, A. (2002) The effects of pyrethroid insecticides on earthworms Eisenia fetida. Fresenius Environmental Bulletin, 11(2), 114-117.
  • Kalka, J., Zackiewicz, J., Felis, E., Nowrotek, M., & Miksch, K. (2015b).
  • Zmiana toksyczności farmaceutyków podczas oczyszczania w systemach hydrofitowych. V Krajowa Konferencja Bioindykacyjna, Lublin 27- 29.05.2015
  • Kim, B., Gautier, M., Prost-Boucle, S., Molle, P., Michel, P., & Gourdon, R. (2014). Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment. Ecological Engineering, 71, 41-47.
  • Kim, K-R., Owens, G., Kwon, S-I., So, K-H., Lee, D-B., & Ok, Y.S. (2011).Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, and Soil Pollution, 214, 163-174.
  • Köck-Schulmeyer, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458-460, 466-476.
  • Kovalova, L., Siegrist, H., von Gunten, U., Eugster, J., Hagenbuch, M., Wittmer, A., Moser, R., & McArdell, Ch. (2013). Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone and UV. Environmental Science and Technology, 47, 7899-7908.
  • Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., & Given, K. (2012). Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS one, 7(1), e29268.
  • Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. Journal of Environmental Management, 90, 2354-2366.
  • Kümmerer, K. Alexy, R., & Hüttig, J. (2004). Standardized tests fail to assess the effects of antibiotics against environmental bacteria because of delayed effects. Water Research, 38, 2111-2116.
  • Kümmerer, K., & Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiologyand Infection, 9(12), 1203-1214.
  • Larcher, S., Delbès, G., Robaire, B., & Yargeau, V., (2012). Degradation of 17α-ethinylestradiol by ozonation — Identification of the by-products and assessment of their estrogenicity and toxicity. Environmental International, 39(1), 66-72.
  • Łebkowska, M., & Załęska-Radziwiłł, M. (2007). Endocrine disruptors – ecotoxicological assays. Archives of Environmental Protection, 2, 81-88.
  • Levy, G., Lutz, I., Krüger, A., & Kloas, W., (2004). Bisphenol A induces feminization in Xenopuslaevistadpoles. Environmental Research, 94(1), 102-111.
  • Li, R., Chen, G.-Z., Tam, N.F.Y., Luan, T.-G., Shin, P.K.S., Cheung, S.G., &
  • Liu, Y.,(2009). Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscushantzschii. Ecotoxicology and Environmental Safety, 72, 321-328.
  • Li, W.C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193-201.
  • Li, Y., Zhu, G., Ng, W.J., & Tan, S.K. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Science of The Total Environment, 468, 908-932.
  • Lindqvist, N., Tuhkanen, T., & Kronberg, L., (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39, 2219-2228.
  • Liu, R., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2015). A review of incorporation of constructed wetland with other treatment processes. Chemical Engineering Journal, 279, 220-230.
  • Llorens, E., Matamoros, V., Domingo, V., Bayona, J.M., & García, J. (2009). Water quality improvement in a full-scale tertiary constructed wetland: effects on conventional and specific organic contaminants. Science of the Total Environment, 407, 2517-24.
  • Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., Bolchi, M., & Gawlik, B.M. (2010). Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Research, 44, 4115-4126.
  • Lucas, M.S., Peres, J.A., & Puma, G.L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Separation and Purification Technology, 72(3), 235-241.
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., & Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473-474, 619-641.
  • Marciocha, D., Kalka, J., Turek-Szytow, J., Wiszniowski, J., & Surmacz-Górska, J. (2009). Oxidation of sulfamethoxazole by UVA radiation and modified Fenton reagent: toxicity and biodegradability of by-products. Water Science and Technology, 60, 2555-2562.
  • Matamoros, V., & Bayona, J.M. (2006). Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environmental Science & Technology, 40, 5811-5816.
  • Matamoros, V., & Salvadó, V. (2013). Evaluation of a coagulation/flocculationlamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. Journal of Environmental Management, 117, 96-102.
  • Matamoros, V., Arias, C., Brix, H., & Bayona, J.M. (2007a). Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter. Environmental Science & Technology, 41, 8171-8177.
  • Matamoros, V., Arias, C., Brix, H., & Bayona, J.M. (2009a). Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Research, 43, 55-62. Matamoros, V., Arias, C.A., Nguyen, L.X., Salvadó, V., & Brix, H. (2012).
  • Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere, 88, 1083-9.
  • Matamoros, V., Caselles-Osorio, A., García, J., & Bayona, J.M. (2008a). Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Science of the Total Environment, 394, 171-176.
  • Matamoros, V., García, J., & Bayona, J.M. (2005) Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study. Environmental Science & Technology, 39, 5449-54.
  • Matamoros, V., García, J., & Bayona, J.M. (2008b). Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Research, 42, 653-660.
  • Matamoros, V., Hijosa, M., & Bayona, J.M., (2009b). Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere, 75, 200-205.
  • Matamoros, V., Jover, E., & Bayona, J.M. (2010). Occurrence and fate of benzothiazoles and benzotriazoles in constructed wetlands. Water Science and Technology, 61(1), 1991-197.
  • Matamoros, V., Puigagut, J., García, J., & Bayona, J.M. (2007b). Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening. Chemosphere, 69(9), 1374-1380.
  • Matamoros, V., Rodríguez, Y., & Albaigés, J. (2016). A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities. Water Research, 88, 777-785.
  • Mathon, B., Choubert, J.M., Miege, C., & Coquery, M. (2016). A review of the photodegradability and transformation products of 13 pharmaceuticals and pesticides relevant to sewage polishing treatment. Science of the Total Environment, 551, 712-724.
  • Matyjaszczyk, E. (2011). Rejestracja środków ochrony roślin w Polsce - historia, stan obecny i przyszłość. Postępy w Ochronie Roślin, 51, 77-87.
  • McArdell, Ch. (2015). The first full-scale advanced ozonation plant in the Dübendorf WWTP running; the new Swiss water protection act approved. Norman Bulletin, 4, 36-37.
  • Meinel, F., Zietzschmann, F., Ruhl, A.S., Sperlich, A., & Jekel, M. (2016). Thebenefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Research, 91, 97-103.
  • Michael, I., Achilleos, A., Lambropoulou, D., Torrens, V.O., Pérez, S., Petrović, M., Barceló, D.,& Fatta-Kassinos, D. (2014). Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono) photocatalysis. Applied Catalysis B: Environmental, 147, 1015-1027.
  • Michałowicz, J. (2014). Bisphenol A – sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology, 37, 738-758.
  • Miksch, K., Cema, G., Corvini, P.F.X., Felis, E., Sochacki, A., Surmacz-Górska, J., Wiszniowski J., & Żabczynski, S. (2015a). R & D priorities in the field of sustainable remediation and purification of agro-industrial and municipal wastewater. New Biotechnology, 32(1), 128-132.
  • Miksch, K., Cema, G., Felis, E., & Sochacki, A. (2015b). Nowoczesne techniki i technologie inżynierii środowiska. Rocznik Ochrona Środowiska, 17 (cz. 1), 833-857.
  • Miller, E.L., Nason, S.L., Karthikeyan, K.G., & Pedersen, J.A. (2016). Root Uptake of Pharmaceuticals and Personal Care Product Ingredients. Environmental Science & Technology, 50, 525-541.
  • Molle, P., Liénard, A., Grasmick, A., & Iwema, A. (2006). Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Water Research, 40(3), 606-612.
  • Morley, N.J. (2009). Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host–parasite relationships. Environmental Toxicology and Pharmacology, 27, 161-175.
  • Nałęcz-Jawecki, G., & Persoone, G. (2006). Toxicity of selected pharmaceuticals to the anostracan crustacean Thamnocephalus platyurus. Environmental Science and Pollution Research, 13, 22-27.
  • Nash, J.P., Kime, D.E., Van der Ven, L.T.M., Wester, P.W., Brion, F., Maack, G., Stahlschmidt-Allner, P., & Tyler, Ch.R., (2004). Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish. Environmental Health Perspectives, 112(17),1725-1733.
  • Nitschke, L., Wilk, A., Schüssler, W., Metzner, G., & Lind, G. (1999). Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere, 39(13), 2313-2323.
  • Nowrotek, M., Sochacki, A., Felis, E., & Miksch, K. (2016). Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: start-up results. International Journal of Phytoremediation, 18(2), 157-163.
  • Orlandini, E. (1999). Pesticide removal by combined ozonation and granular activated carbon filtration. Rotterdam, Holandia: CRC Press.
  • Osorio, V., Sanchís, J., Abad, J.L., Ginebreda, A., Farré, M., Pérez, S., & Barceló, D. (2016). Investigating the formation and toxicity of nitrogen transformation products of diclofenac and sulfamethoxazole in wastewater treatment plants. Journal of Hazardous Materials, 309, 157-164.
  • Oulton, R.L., Kohn, T., & Cwiertny, D.M. (2010). Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. Journal of Environmental Monitoring, 12(11), 1956-1978.
  • Palma, P., Köck-Schulmeyer, M., Alvarenga, P., Ledo, L., Barbosa, I.R., López de Alda, M., & Barceló, D. (2014). Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Science of the Total Environment, 488, 208-219.
  • Park, S., & Choi, K. (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17, 526-538.
  • Pascoe, D., Carroll, K., Karntanut, W., & Watts, M., (2002). Toxicity of 17α-Ethinylestradiol and Bisphenol A to the Freshwater CnidarianHydra vulgaris. Archives of Environmental Contamination and Toxicology, 43, 56-63.
  • Pastor-Belda, M., Garrido, I., Campillo, N., Viñas, P., Hellín, P., Flores, P., & Fenoll, J. (2015). Dispersive liquid–liquid microextraction for the determination of new generation pesticides in soils by liquid chromatography and tandem mass spectrometry. Journal of Chromatography A, 1394, 1-8.
  • Paxeus, N. (2004). Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, b-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Science and Technology, 50(5), 253-260.
  • Peake, B.M., Braund, R., Tong, A., & Tremblay, L.A. (2015). The Life-Cycle of Pharmaceuticals in the Environment. Elsevier.
  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27.
  • Petrovic, M., Sole, M., De Alda, M., & Barcelo, D. (2002) Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects on feral carp. Environmental Toxicology and Chemistry, 21, 2146-2156.
  • Pillard, D.A., Cornell, J.S., DuFresne, D.L., & Hernandez, M.T. (2001). Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water Research, 35(2), 557-560.
  • Prasse, C., Wenk, J., Jasper, J.T., Ternes, T.A., & Sedlak, D.L. (2015). Cooccurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands. Environmental Science & Technology, 49(24), 14136-14145.
  • Quintana, J.B., Weiss, S., & Reemtsma, T.(2005). Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Research, 39, 2654-2664.
  • Radjenović, J., Petrović, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3), 831-841.
  • Reif, R., Besancon, A., Le Corre, K., Jefferson, B., Lema, J.M., & Omil, F. (2011). Comparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water Science and Technology, 63(10), 2411-2417.
  • Reyes-Contreras, C., Hijosa-Valsero, M., Sidrach-Cardona, R., Bayona, J.M., & Bécares, E. (2012). Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a mediumterm study. Chemosphere, 88(2), 161-167.
  • Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340.
  • Roberts, J., Kumar, A., Du, J., Hepplewhite, C., Ellis, D.J., Christy, A.G., & Beavis, S.G. (2016). Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541, 1625-1637.
  • Roberts, P.H., & Thomas, K.V. (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment, 356,143-153.
  • Rolfs, T., Stepkes, H. (2015). Planung einer Ozonung im Vollstrom auf der Klaeranlage Aachen-Soers. Gewaesserschutz-Wasser-Abwasser, 236, 58/1-58/10.
  • Rotaris, A., Arnold, G., Halm, M-P., & Touffet-Briens, F. (2005). Modes of honeybee exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie, 36, 71-83.
  • Rühmland, S., Wick, A., Ternes, T.A., & Barjenbruch, M. (2015). Fate of pharmaceuticals in a subsurface flow constructed wetland and two ponds. Ecological Engineering, 80, 125-139.
  • Sadecka, Z., Myszograj, S., Sieciechowicz, A., Płuciennik-Koropczuk, E. (2015). Wpływ diazynonu (Basudin 25EC) na proces fermentacji metanowej komunalnych osadów sciekowych. Rocznik Ochrona Środowieka, 17, 931-942.
  • Santos, J.L., Aparicio, I., & Alonso, E. (2007). Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International, 33(4), 596-601.
  • Schmitt-Jansen, M., Bartels, P., Adler, N., & Altenburger, R. (2007). Phytotoxicity assessment of diclofenac and its phototransformation products. Analytical and bioanalytical chemistry, 387(4), 1389-1396.
  • Schwentner, G. (2015). Betriebsefrahrungen und Ergebnisse mit der 4. Reinigungsstuffe auf der Klaeranlage Moeblingen-Sindelfindgen. Gewaesserschutz-Wasser-Abwasser, 236, 57/1-57/12
  • Sein, M.M., Zedda, M., Tuerk, J., Schmidt, T.C., Golloch, A., & Von Sonntag, C. (2008). Oxidation of diclofenac with ozone in aqueous solution. Environmental Science & Technology, 42(17), 6656-6662.
  • Semitsoglou-Tsiapou, S., Templeton, M.R., Graham N., Leal, L.H., Martijn, B.J., Royce A., & Kruithof J.C.(2016). Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde, clopyralid and mecoprop - Kinetics and reaction product formation. Water Research, 91, 285-294.
  • Snyder, S.A., Wert, E.C., Rexing, D.J., Zegers, R.E., & Drury, D.D.(2006). Ozone Oxidation of Endocrine Disruptors and Pharmaceuticals in Surface Water and Wastewater. Ozone: Science and Engineering, 28, 445-460.
  • Stańczyk-Mazanek, E., Kępa, U., Stępniak, L. (2015). Drug-Resistant Bacteria in Soil Fertilized with Sewage Sludge. Rocznik Ochrona Srodowiska, 17, 125-142.
  • Stasinakis, A.S., Thomaidis, N.S., Arvaniti, O.S., Asimakopoulos, A.G., Samaras, V.G., Ajibola, A., Mamais, D., & Lekkas, T.D. (2013). Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant. Science of the Total Environment,463, 1067-1075.
  • Suárez, S., Lema, J.M., & Omil, F. (2009). Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresource Technology, 100, 2138-46.
  • Sui, Q., Huang, J., Deng, S., Yu, G., & Fan, Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44, 417-26.
  • Świderska-Bróż, M. (1993). Mikrozanieczyszczenia wód i możliwości ich usuwania. Ochrona Środowiska, 3(50), 23-28.
  • Tawfik, S.M., & Negm, N.A. (2016). Synthesis, characterization and evaluationof some anionic surfactants with phosphate group as a biodegradable corrosion inhibitor for carbon steel in acidic solution. Journal of Molecular Liquids, 215, 185-196.
  • Ternes, T.A., Joss, A., & Siegrist, H. (2004). Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environmental Science & Technology, 38(20), 392A-399A.
  • Ternes, T.A., & Joss, A. (red.) (2006). Human Pharmaceuticals, Hormones and Fragrances: The challenge of micropollutants in urban water management. Londyn, Wielka Brytania: IWA Publishing.
  • Ternes, T.A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245-3260.
  • Ternes, T.A., Bonerz, M., Herrmann, N., Teiser, B., & Andersen, H.R. (2007). Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere, 66, 894-904.
  • Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Köhler, H.-R., & Schwaiger J. (2004). Toxic effects of the non-steroidal antiinflammatory drug diclofenac. Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 68, 151-166.
  • Trudeau, V.L., Turque, N., Le Mével, S., Alliot, C., Gallant, N., Coen, L., Pakdel, F., & Demeneix, B., (2005). Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Using in Vivo Somatic Gene Transfer. Environmental Health Perspectives, 113(3), 329-334.
  • Vel Leitner, N.K., & Roshani, B. (2010): Kinetic of benzotriazole oxidation by ozone and hydroxyl radical. Water Research, 44(6), 2058-2066.
  • Verlicchi, P., & Zambello, E. (2014). How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Science of the Total Environment, 470, 1281-1306.
  • Verlicchi, P., Aukidy, M.A., & Zambello, E., (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment - a review. Science of the Total Environment, 429, 123-155.
  • Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D., Al Aukidy, M., & Zambello, E. (2013). Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed – analysis of their respective contributions. Science of the Total Environment, 454-455, 411-25.
  • Vieno, N., & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant – a review. Environment International, 69, 28-39
  • von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kineticsand product formation. Water Research, 37, 1443-1467.
  • von Sonntag, C., & von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment. From basic principles to applications. IWA Publishing.
  • Voutsa, D., Hartmann, P., Schaffner, C., & Giger, W. (2006). Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environmental Science and Pollution Research, 13(5), 333-341.
  • Wan, Y., Xue, J., & Kannan, K. (2016). Benzothiazoles in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Journal of hazardous materials, 311, 37-42.
  • Wang, G., Ma, P., Zhang, Q., Lewis, J., Lacey, M., Furukawa, Y., O’Reilly, S.E., Meaux, S., McLachlan, J., & Zhang, S. (2012). Endocrine disrupting chemicals in New Orleans surface waters and Mississippi Sound sediments. Journal of Environmental Monitoring, 14, 1353-1264.
  • Wennmalm, Å.,& Gunnarsson, B. (2009). Pharmaceutical management through environmental product labeling in Sweden. Environment International, 35, 775-777.
  • Wermter, P. (2015). Ableitung von Bezugsabfuessen zur bestimmung von Mikroschadstoffenkonzentationen in Fliessgewaessern. Gewaesserschutz-Wasser-Abwasser, 237.
  • Wrzosek, J., Gworek, B., & Maciaszek, D. (2009). Środki ochrony roślin w aspekcie ochrony środowiska. Ochrona Środowiska i Zasobów Naturalnych, 39, 75-88.
  • Wunderlin, P., Abbeglen, C., Schaerer, M., Koch, M., Joss, A., Siegrist, H.(2015). Gewaesserschutz-Wasser-Abwasser, 236, 56/1-56/9.
  • Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Research, 57, 40-55.
  • Xian, Q., Hu, L., Chen, H., Chang, Z., & Zou, H. (2010). Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. Journal of Environmental Management, 91, 2657-61
  • Yang, S., & Carlson, K.H. (2004). Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. Journal of Chromatography A,1038, 141-55.
  • Zhang, D., Gersberg, R.M., Ng, W.J., & Tan, S.K. (2014). Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environmental Pollution, 184, 620-639.
  • Zhang, D.Q., Gersberg, R.M., Hua, T., Zhu, J., Tuan, N.A., & Tan, S.K. (2012a). Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Chemosphere, 87, 273-277.
  • Zhang, D.Q., Gersberg, R.M., Zhu, J., Hua, T., Jinadasa, K.B.S.N., & Tan, S.K. (2012b). Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Environmental Pollution, 167, 124-131.
  • Zhang, D.Q., Tan, S.K., Gersberg, R.M., Sadreddini, S., Zhu, J., & Tuan, N.A. (2011). Removal of pharmaceutical compounds in tropical constructed wetlands. Ecological Engineering, 37, 460-464.
  • Zhang, Y., Geißen, S.U., & Gal, C. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151-1161.
  • Zhang, Y., Zhu, H., Szewczyk, U., & Geissen, S.U. (2015). Removal of pharmaceuticals in aerated biofilters with manganese feeding. Water Research, 72, 218-226.
  • Strony internetowe
  • www.1 http://extoxnet.orst.edu/ghindex.html
  • www.2 www.env.go.jp/en/chemi/chemicals/profile_erac/profile9/pf2-06.pdf
  • www.3 webcode/20160309_002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-880f756f-e8f5-45b0-a041-79ce18989317
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.